Welcome!

Java IoT Authors: Pat Romanski, Elizabeth White, Zakia Bouachraoui, William Schmarzo, Yeshim Deniz

Related Topics: @DevOpsSummit, Linux Containers, Containers Expo Blog

@DevOpsSummit: Blog Feed Post

Break Down the Silos: Correlate Data Between Vendors | @DevOpsSummit #DevOps #APM #Monitoring

The complexity of modern infrastructure makes it difficult to avoid silos

Break Down the Silos: Correlate Data Between Vendors
By Chris Riley

Thanks to the DevOps movement, we now understand why software delivery chains that consist of a series of silos are bad. They complicate communication between different teams, leading to delivery delays, backtracking, and bugs.

When it comes to incident management, there is another type of silo to contend with - the kind that separates incident management data from one vendor or product to another. These silos hamper incident resolution, as it makes it more difficult to collect and analyze monitoring data from multiple sources.

How do you break down these silos to keep incident management operations flowing efficiently?

Identify the Silos
The first step in working past incident management silos is to understand why silos exist in the first place.

The reason is simple: Modern infrastructure consists of diverse hardware and software. Most components have special monitoring needs. They output information in a certain format, according to a certain rhythm, and they require data to be collected in a certain way. The monitoring information associated with each part of the infrastructure, therefore, lives in a silo, because it is not readily comparable to data from other parts of the infrastructure.

As a basic example, take a datacenter that consists of ten bare-metal servers running Windows and another ten bare-metal servers that run Linux. In this scenario, the company would require different monitoring tools for its Windows and Linux servers. Although some of the monitoring information for each type of operating system (such as whether the host is up) would be the same, other data would not be. And either way, the data would need to be collected by tools that are compatible with the operating system in question. Each context, therefore, becomes a distinct silo, with its own miniature ecosystem of monitoring tools and data.

This is just a simple example, by the way. Things are much more complicated in most real-world settings, when you would have not just two different types of bare-metal servers to monitor, but virtual servers running on top of one or more types of hypervisors, workstations running different types of desktop operating systems, and mobile devices powered by a widely varying array of mobile operating systems, versions, and so on.

Break Down Silos
How do you eliminate the silos that separate each monitoring context within your infrastructure so that you get seamless and holistic monitoring visibility? The solution has two parts.

Step 1: Centralize Data Collection
The first step is to implement an incident management solution that can collect information from diverse types of environments, then forward that information to a central location. This way, engineers can monitor the entire infrastructure from a single vantage point. They don't need to go looking inside individual silos to monitor different parts of the infrastructure.

Centralized data collection requires an incident management solution that is smart enough to aggregate monitoring information from multiple sources. This is no trivial task; supporting a wide range of environments and endpoints requires integration with many different types of monitoring systems, sometimes even custom tooling.

Step 2: Translate the Data
The second step is one that is easy to overlook. In addition to aggregating data from many monitoring tools and exposing it in a central location, incident management teams also need to translate all of the data into a consistent format.

Data translation is the only way to assure that every engineer is able to interpret and react to alerts from any source. If data is not translated, engineers would have to have special expertise in a particular type of monitoring system or know a certain vendor's schema, in order to understand data that originated from that system. Making all of the data available in a central location would, therefore, be of little help in breaking down silos, because there would still be tall barriers separating different monitoring contexts.

Consider, for example, the different ways in which Zabbix and Nagios use the term "alias." On the former monitoring system, an alias basically serves as a shorthand for any type of configuration term. On Nagios, in contrast, an alias is a given name for a host. Its meaning is more specific. If you don't understand this difference and you see data from both Zabbix and Nagios systems aggregated in a centralized dashboard, things can easily get confusing.

For effective incident management then, you need a solution that can translate vendor- and platform-specific terminology into a single, consistent language. Only with event normalization, such as that enabled by the PagerDuty Common Event Format, can responders easily and accurately interpret data from multiple sources.

The complexity of modern infrastructure makes it difficult to avoid silos. Yet, that does not mean that monitoring information has to live within those silos, as information is only useful when it can be understood and acted upon. By aggregating monitoring information from diverse sources and translating it into a language that anyone on the on-call team can understand, incident management teams can break down the silos that exist within their infrastructure. They will then enjoy seamless communication and agile, real-time response to incidents.


Dunatov, Devin. "Speeding." Jul 17, 2012. Online image. <https://www.flickr.com/photos/ddunatov/7588797542>

The post Break Down the Silos: Correlate Data Between Vendors appeared first on PagerDuty.

Read the original blog entry...

More Stories By PagerDuty Blog

PagerDuty’s operations performance platform helps companies increase reliability. By connecting people, systems and data in a single view, PagerDuty delivers visibility and actionable intelligence across global operations for effective incident resolution management. PagerDuty has over 100 platform partners, and is trusted by Fortune 500 companies and startups alike, including Microsoft, National Instruments, Electronic Arts, Adobe, Rackspace, Etsy, Square and Github.

IoT & Smart Cities Stories
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, virtualized, and cloud, through to IoT and industrial control systems. Installed as a self-configuring cyber defense platform, Darktrace continuously learns what is ‘normal' for all devices and users, updating its understa...
At CloudEXPO Silicon Valley, June 24-26, 2019, Digital Transformation (DX) is a major focus with expanded DevOpsSUMMIT and FinTechEXPO programs within the DXWorldEXPO agenda. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of business. Only 12% still survive. Similar percentages are found throug...
OpsRamp is an enterprise IT operation platform provided by US-based OpsRamp, Inc. It provides SaaS services through support for increasingly complex cloud and hybrid computing environments from system operation to service management. The OpsRamp platform is a SaaS-based, multi-tenant solution that enables enterprise IT organizations and cloud service providers like JBS the flexibility and control they need to manage and monitor today's hybrid, multi-cloud infrastructure, applications, and wor...
Apptio fuels digital business transformation. Technology leaders use Apptio's machine learning to analyze and plan their technology spend so they can invest in products that increase the speed of business and deliver innovation. With Apptio, they translate raw costs, utilization, and billing data into business-centric views that help their organization optimize spending, plan strategically, and drive digital strategy that funds growth of the business. Technology leaders can gather instant recomm...
The Master of Science in Artificial Intelligence (MSAI) provides a comprehensive framework of theory and practice in the emerging field of AI. The program delivers the foundational knowledge needed to explore both key contextual areas and complex technical applications of AI systems. Curriculum incorporates elements of data science, robotics, and machine learning-enabling you to pursue a holistic and interdisciplinary course of study while preparing for a position in AI research, operations, ...
After years of investments and acquisitions, CloudBlue was created with the goal of building the world's only hyperscale digital platform with an increasingly infinite ecosystem and proven go-to-market services. The result? An unmatched platform that helps customers streamline cloud operations, save time and money, and revolutionize their businesses overnight. Today, the platform operates in more than 45 countries and powers more than 200 of the world's largest cloud marketplaces, managing mo...
Trend Micro Incorporated, a global leader in cybersecurity solutions, helps to make the world safe for exchanging digital information. Our innovative solutions for consumers, businesses, and governments provide layered security for data centers, cloud workloads, networks, and endpoints. All our products work together to seamlessly share threat intelligence and provide a connected threat defense with centralized visibility and investigation, enabling better, faster protection. With more than 6,00...
Tapping into blockchain revolution early enough translates into a substantial business competitiveness advantage. Codete comprehensively develops custom, blockchain-based business solutions, founded on the most advanced cryptographic innovations, and striking a balance point between complexity of the technologies used in quickly-changing stack building, business impact, and cost-effectiveness. Codete researches and provides business consultancy in the field of single most thrilling innovative te...
Codete accelerates their clients growth through technological expertise and experience. Codite team works with organizations to meet the challenges that digitalization presents. Their clients include digital start-ups as well as established enterprises in the IT industry. To stay competitive in a highly innovative IT industry, strong R&D departments and bold spin-off initiatives is a must. Codete Data Science and Software Architects teams help corporate clients to stay up to date with the mod...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and Bi...