Welcome!

Java IoT Authors: Automic Blog, Liz McMillan, Elizabeth White, Pat Romanski, Roger Strukhoff

Related Topics: @CloudExpo, Java IoT, Open Source Cloud, Containers Expo Blog

@CloudExpo: Blog Feed Post

Finally Getting the Most out of the Java Thread Pool | @CloudExpo #JVM #Java #Cloud

Thread pool is a core concept in multithreaded programming that represents a collection of idle threads used to execute tasks

Finally Getting the Most out of the Java Thread Pool
By Eugen Paraschiv

First, let's outline a frame of reference for multithreading and why we may need to use a thread pool.

A thread is an execution context that can run a set of instructions within a process - aka a running program. Multithreaded programming refers to using threads to execute multiple tasks concurrently. Of course, this paradigm is well supported on the JVM.

Although this brings several advantages, primarily regarding the performance of a program, multithreaded programming can also have disadvantages - such as increased complexity of the code, concurrency issues, unexpected results and adding the overhead of thread creation.

In this article, we're going to take a closer look at how the latter issue can be mitigated by using thread pools in Java.

Why Use a Thread Pool?
Creating and starting a thread can be an expensive process. By repeating this process every time we need to execute a task, we're incurring a significant performance cost - which is exactly what we were attempting to improve by using threads.

For a better understanding of the cost of creating and starting a thread, let's see what the JVM actually does behind the scenes:

  • It allocates memory for a thread stack that holds a frame for every thread method invocation
  • Each frame consists of a local variable array, return value, operand stack and constant pool
  • Some JVMs that support native methods also allocate a native stack
  • Each thread gets a program counter that tells it what the current instruction executed by the processor is
  • The system creates a native thread corresponding to the Java thread
  • Descriptors relating to the thread are added to the JVM internal data structures
  • The threads share the heap and method area

Of course, the details of all this will depend on the JMV and the operating system.

In addition, more threads mean more work for the system scheduler to decide which thread gets access to resources next.

A thread pool helps mitigate the issue of performance by reducing the number of threads needed and managing their lifecycle.
Essentially, threads are kept in the thread pool until they're needed, after which they execute the task and return the pool to be reused later. This mechanism is especially helpful in systems that execute a large number of small tasks.

Java Thread Pools
Java provides its own implementations of the thread pool pattern, through objects called executors. These can be used through executor interfaces or directly through thread pool implementations - which does allow for finer-grained control.

The java.util.concurrent package contains the following interfaces:

  • Executor - a simple interface for executing tasks
  • ExecutorService - a more complex interface which contains additional methods for managing the tasks and the executor itself
  • ScheduledExecutorService - extends ExecutorService with methods for scheduling the execution of a task

Alongside these interfaces, the package also provides the Executors helper class for obtaining executor instances, as well as implementations for these interfaces.

Generally, a Java thread pool is composed of:

  • The pool of worker threads, responsible for managing the threads
  • A thread factory that is responsible for creating new threads
  • A queue of tasks waiting to be executed

In the following sections, let's see how the Java classes and interfaces that provide support for thread pools work in more detail.

The Executors class and Executor interface
The Executors class contains factory methods for creating different types of thread pools, while Executor is the simplest thread pool interface, with a single execute() method.

Let's use these two classes in conjunction with an example that creates a single-thread pool, then uses it to execute a simple statement:

Executor executor = Executors.newSingleThreadExecutor();
executor.execute(() -> System.out.println("Single thread pool test"));

Notice how the statement can be written as a lambda expression - which is inferred to be of Runnable type.

The execute() method runs the statement if a worker thread is available, or places the Runnable task in a queue to wait for a thread to become available.

Basically, the executor replaces the explicit creation and management of a thread.

The factory methods in the Executors class can create several types of thread pools:

  • newSingleThreadExecutor() - a thread pool with only one thread with an unbounded queue, which only executes one task at a time
  • newFixedThreadPool() - a thread pool with a fixed number of threads which share an unbounded queue; if all threads are active when a new task is submitted, they will wait in queue until a thread becomes available
  • newCachedThreadPool() - a thread pool that creates new threads as they are needed
  • newWorkStealingThreadPool() - a thread pool based on a "work-stealing" algorithm which will be detailed more in a later section

Next, let's take a look into what additional capabilities the ExecutorService interface.

The ExecutorService
One way to create an ExecutorService is to use the factory methods from the Executors class:

ExecutorService executor = Executors.newFixedThreadPool(10);

Besides the execute() method, this interface also defines a similar submit() method that can return a Future object:

Callable<Double> callableTask = () -> {
return employeeService.calculateBonus(employee);
};
Future<Double> future = executor.submit(callableTask);
// execute other operations
try {
if (future.isDone()) {
double result = future.get();
}
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}

As you can see in the example above, the Future interface can return the result of a task for Callable objects, and can also show the status of a task execution.

The ExecutorService is not automatically destroyed when there are no tasks waiting to be executed, so to shut it down explicitly, you can use the shutdown() or shutdownNow() APIs:

executor.shutdown();

The ScheduledExecutorService
This is a subinterface of ExecutorService - which adds methods for scheduling tasks:

ScheduledExecutorService executor = Executors.newScheduledThreadPool(10);

The schedule() method specifies a task to be executed, a delay value and a TimeUnit for the value:

Future<Double> future = executor.schedule(callableTask, 2, TimeUnit.MILLISECONDS);

Furthermore, the interface defines two additional methods:

executor.scheduleAtFixedRate(
() -> System.out.println("Fixed Rate Scheduled"), 2, 2000, TimeUnit.MILLISECONDS);

executor.scheduleWithFixedDelay(
() -> System.out.println("Fixed Delay Scheduled"), 2, 2000, TimeUnit.MILLISECONDS);

The scheduleAtFixedRate() method executes the task after 2 ms delay, then repeats it at every 2 seconds. Similarly, the scheduleWithFixedDelay() method starts the first execution after 2 ms, then repeats the task 2 seconds after the previous execution ends.

In the following sections, let's also go through two implementations of the ExecutorService interface: ThreadPoolExecutor and ForkJoinPool.

The ThreadPoolExecutor
This thread pool implementation adds the ability to configure parameters
, as well as extensibility hooks. The most convenient way to create a ThreadPoolExecutor object is by using the Executors factory methods:

ThreadPoolExecutor executor = (ThreadPoolExecutor) Executors.newFixedThreadPool(10);

In this manner, the thread pool is preconfigured for the most common cases. The number of threads can be controlled by setting the parameters:

  • corePoolSize and maximumPoolSize - which represent the bounds of the number of threads
  • keepAliveTime - which determines the time to keep extra threads alive

Digging a bit further, here's how these parameters are used.

If a task is submitted and fewer than corePoolSize threads are in execution, then a new thread is created. The same thing happens if there are more than corePoolSize but less than maximumPoolSize threads running, and the task queue is full. If there are more than corePoolSize threads which have been idle for longer than keepAliveTime, they will be terminated.

In the example above, the newFixedThreadPool() method creates a thread pool with corePoolSize=maximumPoolSize=10, and a keepAliveTime of 0 seconds.

If you use the newCachedThreadPool() method instead, this will create a thread pool with a maximumPoolSize of Integer.MAX_VALUE and a keepAliveTime of 60 seconds:

ThreadPoolExecutor cachedPoolExecutor
= (ThreadPoolExecutor) Executors.newCachedThreadPool();

The parameters can also be set through a constructor or through setter methods:

ThreadPoolExecutor executor = new ThreadPoolExecutor(
4, 6, 60, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>()
);
executor.setMaximumPoolSize(8);

A subclass of ThreadPoolExecutor is the ScheduledThreadPoolExecutor class, which implements the ScheduledExecutorService interface. You can create this type of thread pool by using the newScheduledThreadPool() factory method:

ScheduledThreadPoolExecutor executor
= (ScheduledThreadPoolExecutor) Executors.newScheduledThreadPool(5);

This creates a thread pool with a corePoolSize of 5, an unbounded maximumPoolSize and a keepAliveTime of 0 seconds.

The ForkJoinPool
Another implementation of a thread pool is the ForkJoinPool class. This implements the ExecutorService interface and represents the central component of the fork/join framework introduced in Java 7.

The fork/join framework is based on a "work-stealing algorithm". In simple terms, what this means is that threads that run out of tasks can "steal" work from other busy threads.

A ForkJoinPool is well suited for cases when most tasks create other subtasks or when many small tasks are added to the pool from external clients.

The workflow for using this thread pool typically looks something like this:

  • create a ForkJoinTask subclass
  • split the tasks into subtasks according to a condition
  • invoke the tasks
  • join the results of each task
  • create an instance of the class and add it to the pool

To create a ForkJoinTask, you can choose one of its more commonly used subclasses, RecursiveAction or RecursiveTask - if you need to return a result.

Let's implement an example of a class that extends RecursiveTask and calculates the factorial of a number by splitting it into subtasks depending on a THRESHOLD value:

public class FactorialTask extends RecursiveTask<BigInteger> {
private int start = 1;
private int n;
private static final int THRESHOLD = 20;

// standard constructors

@Override
protected BigInteger compute() {
if ((n - start) >= THRESHOLD) {
return ForkJoinTask.invokeAll(createSubtasks())
.stream()
.map(ForkJoinTask::join)
.reduce(BigInteger.ONE, BigInteger::multiply);
} else {
return calculate(start, n);
}
}
}

The main method that this class needs to implement is the overridden compute() method, which joins the result of each subtask.

The actual splitting is done in the createSubtasks() method:

private Collection<FactorialTask> createSubtasks() {
List<FactorialTask> dividedTasks = new ArrayList<>();
int mid = (start + n) / 2;
dividedTasks.add(new FactorialTask(start, mid));
dividedTasks.add(new FactorialTask(mid + 1, n));
return dividedTasks;
}

Finally, the calculate() method contains the multiplication of values in a range:

private BigInteger calculate(int start, int n) {
return IntStream.rangeClosed(start, n)
.mapToObj(BigInteger::valueOf)
.reduce(BigInteger.ONE, BigInteger::multiply);
}

Next, tasks can be added to a thread pool:

ForkJoinPool pool = ForkJoinPool.commonPool();
BigInteger result = pool.invoke(new FactorialTask(100));

ThreadPoolExecutor vs. ForkJoinPool
At first look, it seems that the fork/join framework brings improved performance. However, this may not always be the case depending on the type of problem you need to solve.

When choosing a thread pool, it's important to also remember there is overhead caused by creating and managing threads and switching execution from one thread to another.

The ThreadPoolExecutor provides more control over the number of threads and the tasks that are executed by each thread. This makes it more suitable for cases when you have a smaller number of larger tasks that are executed on their own threads.

By comparison, the ForkJoinPool is based on threads "stealing" tasks from other threads. Because of this, it is best used to speed up work in cases when tasks can be broken up into smaller tasks.

To implement the work-stealing algorithm, the fork/join framework uses two types of queues:

  • A central queue for all tasks
  • A task queue for each thread

When threads run out of tasks in their own queues, they attempt to take tasks from the other queues. To make the process more efficient, the thread queue uses a deque (double ended queue) data structure, with threads being added at one end and "stolen" from the other end.

Here is a good visual representation of this process from The H Developer:

fork/join thread pool

In contrast with this model, the ThreadPoolExecutor uses only one central queue.

One last thing to remember is that the choosing a ForkJoinPool is only useful if the tasks create subtasks. Otherwise, it will function the same as a ThreadPoolExecutor, but with extra overhead.

Tracing Thread Pool Execution
Now that we have a good foundational understanding of the Java thread pool ecosystem, let's take a closer look at what happens during the execution of an application that uses a thread pool.

By adding some logging statements in the constructor of FactorialTask and the calculate() method, you can follow the invocation sequence:

13:07:33.123 [main] INFO ROOT - New FactorialTask Created
13:07:33.123 [main] INFO ROOT - New FactorialTask Created
13:07:33.123 [main] INFO ROOT - New FactorialTask Created
13:07:33.123 [main] INFO ROOT - New FactorialTask Created 13:07:33.123 [ForkJoinPool.commonPool-worker-1] INFO ROOT - New FactorialTask Created
13:07:33.123 [ForkJoinPool.commonPool-worker-1] INFO ROOT - New FactorialTask Created
13:07:33.123 [main] INFO ROOT - New FactorialTask Created
13:07:33.123 [main] INFO ROOT - New FactorialTask Created
13:07:33.123 [main] INFO ROOT - Calculate factorial from 1 to 13
13:07:33.123 [ForkJoinPool.commonPool-worker-1] INFO ROOT - New FactorialTask Created
13:07:33.123 [ForkJoinPool.commonPool-worker-2] INFO ROOT - New FactorialTask Created
13:07:33.123 [ForkJoinPool.commonPool-worker-1] INFO ROOT - New FactorialTask Created
13:07:33.123 [ForkJoinPool.commonPool-worker-2] INFO ROOT - New FactorialTask Created
13:07:33.123 [ForkJoinPool.commonPool-worker-1] INFO ROOT - Calculate factorial from 51 to 63
13:07:33.123 [ForkJoinPool.commonPool-worker-2] INFO ROOT - Calculate factorial from 76 to 88
13:07:33.123 [ForkJoinPool.commonPool-worker-3] INFO ROOT - Calculate factorial from 64 to 75
13:07:33.163 [ForkJoinPool.commonPool-worker-3] INFO ROOT - New FactorialTask Created
13:07:33.163 [main] INFO ROOT - Calculate factorial from 14 to 25
13:07:33.163 [ForkJoinPool.commonPool-worker-3] INFO ROOT - New FactorialTask Created
13:07:33.163 [ForkJoinPool.commonPool-worker-2] INFO ROOT - Calculate factorial from 89 to 100
13:07:33.163 [ForkJoinPool.commonPool-worker-3] INFO ROOT - Calculate factorial from 26 to 38
13:07:33.163 [ForkJoinPool.commonPool-worker-3] INFO ROOT - Calculate factorial from 39 to 50

Here you can see there are several tasks created, but only 3 worker threads - so these get picked up by the available threads in the pool.

Also notice how the objects themselves are actually created in the main thread, before being passed to the pool for execution.

This is actually a great way to explore and understand thread pools at runtime, with the help of a solid logging visualization tool such as Prefix.

The core aspect of logging from a thread pool is to make sure the thread name is easily identifiable in the log message; Log4J2 is a great way to do that by making good use of layouts for example.

Potential Risks of Using a Thread Pool
Although thread pools provide significant advantages, you can also encounter several problems while using one, such as:

  • Using a thread pool that is too large or too small - if the thread pool contains too many threads, this can significantly affect the performance of the application; on the other hand, a thread pool that is too small may not bring the performance gain that you would expect
  • Deadlock can happen just like in any other multi-threading situation; for example, a task may be waiting for another task to complete, with no available threads for this latter one to execute; that's why it's usually a good idea to avoid dependencies between tasks
  • Queuing a very long task - to avoid blocking a thread for too long, you can specify a maximum wait time after which the task is rejected or re-added to the queue

To mitigate these risks, you have to choose the thread pool type and parameters carefully, according to the tasks that they will handle. Stress-testing your system is also well-worth it to get some real-world data of how your thread pool behaves under load.

Conclusion
Thread pools provide a significant advantage by, simply put, separating the execution of tasks from the creation and management of threads. Additionally, when used right, they can greatly improve the performance of your application.

And, the great thing about the Java ecosystem is that you have access to some of the most mature and battle-tested implementations of thread-pools out there, if you learn to leverage them properly and take full advantage of them.

The post Finally Getting the Most out of the Java Thread Pool appeared first on Stackify.

Read the original blog entry...

More Stories By Stackify Blog

Stackify offers the only developers-friendly solution that fully integrates error and log management with application performance monitoring and management. Allowing you to easily isolate issues, identify what needs to be fixed quicker and focus your efforts – Support less, Code more. Stackify provides software developers, operations and support managers with an innovative cloud based solution that gives them DevOps insight and allows them to monitor, detect and resolve application issues before they affect the business to ensure a better end user experience. Start your free trial now stackify.com

@ThingsExpo Stories
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
Recently, REAN Cloud built a digital concierge for a North Carolina hospital that had observed that most patient call button questions were repetitive. In addition, the paper-based process used to measure patient health metrics was laborious, not in real-time and sometimes error-prone. In their session at 21st Cloud Expo, Sean Finnerty, Executive Director, Practice Lead, Health Care & Life Science at REAN Cloud, and Dr. S.P.T. Krishnan, Principal Architect at REAN Cloud, discussed how they built...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
The 22nd International Cloud Expo | 1st DXWorld Expo has announced that its Call for Papers is open. Cloud Expo | DXWorld Expo, to be held June 5-7, 2018, at the Javits Center in New York, NY, brings together Cloud Computing, Digital Transformation, Big Data, Internet of Things, DevOps, Machine Learning and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding busin...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
22nd International Cloud Expo, taking place June 5-7, 2018, at the Javits Center in New York City, NY, and co-located with the 1st DXWorld Expo will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud ...
22nd International Cloud Expo, taking place June 5-7, 2018, at the Javits Center in New York City, NY, and co-located with the 1st DXWorld Expo will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud ...
DevOps at Cloud Expo – being held June 5-7, 2018, at the Javits Center in New York, NY – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real results. Among the proven benefits,...
@DevOpsSummit at Cloud Expo, taking place June 5-7, 2018, at the Javits Center in New York City, NY, is co-located with 22nd Cloud Expo | 1st DXWorld Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait...
Cloud Expo | DXWorld Expo have announced the conference tracks for Cloud Expo 2018. Cloud Expo will be held June 5-7, 2018, at the Javits Center in New York City, and November 6-8, 2018, at the Santa Clara Convention Center, Santa Clara, CA. Digital Transformation (DX) is a major focus with the introduction of DX Expo within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive ov...
SYS-CON Events announced today that T-Mobile exhibited at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. As America's Un-carrier, T-Mobile US, Inc., is redefining the way consumers and businesses buy wireless services through leading product and service innovation. The Company's advanced nationwide 4G LTE network delivers outstanding wireless experiences to 67.4 million customers who are unwilling to compromise on qua...
SYS-CON Events announced today that Cedexis will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Cedexis is the leader in data-driven enterprise global traffic management. Whether optimizing traffic through datacenters, clouds, CDNs, or any combination, Cedexis solutions drive quality and cost-effectiveness. For more information, please visit https://www.cedexis.com.
SYS-CON Events announced today that Google Cloud has been named “Keynote Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Companies come to Google Cloud to transform their businesses. Google Cloud’s comprehensive portfolio – from infrastructure to apps to devices – helps enterprises innovate faster, scale smarter, stay secure, and do more with data than ever before.
SYS-CON Events announced today that Vivint to exhibit at SYS-CON's 21st Cloud Expo, which will take place on October 31 through November 2nd 2017 at the Santa Clara Convention Center in Santa Clara, California. As a leading smart home technology provider, Vivint offers home security, energy management, home automation, local cloud storage, and high-speed Internet solutions to more than one million customers throughout the United States and Canada. The end result is a smart home solution that sav...
SYS-CON Events announced today that Opsani will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Opsani is the leading provider of deployment automation systems for running and scaling traditional enterprise applications on container infrastructure.
SYS-CON Events announced today that Nirmata will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Nirmata provides a comprehensive platform, for deploying, operating, and optimizing containerized applications across clouds, powered by Kubernetes. Nirmata empowers enterprise DevOps teams by fully automating the complex operations and management of application containers and its underlying ...
SYS-CON Events announced today that Opsani to exhibit at SYS-CON's 21st Cloud Expo, which will take place on October 31 through November 2nd 2017 at the Santa Clara Convention Center in Santa Clara, California. Opsani is creating the next generation of automated continuous deployment tools designed specifically for containers. How is continuous deployment different from continuous integration and continuous delivery? CI/CD tools provide build and test. Continuous Deployment is the means by which...