Welcome!

Java Authors: Yeshim Deniz, Liz McMillan, Carmen Gonzalez, Yakov Fain, Gil Allouche

Related Topics: Java

Java: Article

Clustered Timers

For Robust Scalable Systems

Often, when someone asks how we are going to scale the Web application we're about to develop, we look at them, smile, and say, "Not a problem - we'll just cluster the application servers." Clustering our application across multiple servers provides us with the ability to handle large volumes of traffic and to scale systems by adding additional servers to the cluster.

In addition to providing scalability, application clusters make the system more robust by allowing for automatic system failover when a server fails. This way when one server goes down the application continues to run, albeit with slightly decreased performance. While it is true that the current generation of application servers makes it relatively pain-free to create a cluster, there are still several significant, if often overlooked, design issues that must be taken into account now that the system is clustered.

When we run our Web application in a cluster, we have the exact same software running on each machine in the cluster. While this eliminates a host of configuration management difficulties, it does create other problems. While we don't have to write different code for every possible machine in the cluster, there are times when this simplicity actually makes things more complex; the running of scheduled tasks is typically one of these areas. Scheduled tasks are used to execute procedures that need to run at certain fixed times or at fixed intervals. Typical examples of scheduled tasks within a Web application are report-generation tasks and tasks that send data to external systems that are only available within a certain time frame.

To understand why clustering affects how we design our application to handle scheduled tasks, let's consider a generic e-commerce Web application. To allow management to analyze sales trends, profits, inventory, etc., the system has been set up to periodically compile a set of reports and e-mail them to management. Clearly, management doesn't want to receive multiple e-mails containing the same reports, yet this is what we will get if we simply write a scheduled task and then cluster our system. When the appointed time to run the report comes up, all machines in the cluster will generate the same report and send it to management. This can be seen visually in Figure 1.

Perhaps the most straightforward way to solve this problem is to package the code that runs the scheduled tasks into a separate JAR file within the EAR file that contains the WAR file for the Web application. This EAR file is deployed to all the servers in the cluster; however, the JAR containing the scheduled tasks is configured to run on only one of the servers. This solves the problem by preventing the scheduled tasks from ever running on multiple machines. However, there is a significant downside to these solutions. First, you have now created additional configuration management problems. You need to carefully track which servers are set up to run the scheduled tasks and the exact deployment procedures that were used so that when additional servers are added to the cluster, the application is properly deployed on those servers.

The second problem is that you have effectively taken the scheduled tasks out of the cluster. Now, if the machine that is set up with the scheduled tasks fails, or its connection to the network fails, there is no backup or failover system. The tasks won't run. The remainder of this article investigates solutions to this problem that allow the scheduled tasks to remain part of the cluster and don't involve additional configuration management.

To stop every system in the cluster from performing the same scheduled task, report generation in this case, we have to utilize something outside of the application server cluster to track the state of our scheduled task. A perfect candidate for maintaining the state of our scheduled tasks is a shared database, and since nearly all applications already have access to a shared database, this is the resource we will use to solve this problem in our example (see Figure 2). It's worth mentioning that while a shared database is an ideal resource for solving this problem, it's not the only option. The solution presented here could be adapted to use flat files or some other shared resource external to the cluster.

Our external resource, the database in this case, will act as a mediator between competing machines in the cluster. We will create a table in the database that tracks scheduled tasks and their status. When a machine in the cluster wants to run one of the scheduled tasks, it first checks the status of that task in the database to see if some other machine is already running that task. If no other machine is running the task, the status of the task will be updated and that machine will run the task.

Another way of thinking about this solution is to think in terms of a concurrent method running on a single machine. If we see the scheduled task in these terms, it becomes clear that the best way to keep multiple threads from running the task at the same time is to use some sort of semaphore. Again, if this was a single method on one machine, we could easily do this by creating a synchronized block around the code that we wanted to protect. When a thread first attempts to enter the synchronized block, it has to attempt to get the lock. If it fails to get the lock, it can't run. In our distributed system, we are using the database as the lock.

We will call our database table "Tasks" and it will have three columns. The first column will be the name of the task, the second the status of the task, and the third the date and time that the task last changed status. The generic SQL script to produce this table is shown below.

CREATE TABLE 'Tasks' (
'TaskName' varchar(50) NOT NULL,
'Status' varchar(25) NOT NULL,
'StatusTime' datetime,
PRIMARY KEY ('TaskName')
) ;

Now that we have created our database table to serve as our mediator, we can create the class that accesses this table in order to determine if a particular instance of a Task can execute. We'll call this class TaskMonitor. (The source code for this article can be downloaded from www.sys-con.com/java/sourcec.cfm.) The class exposes two methods to the public, public static boolean acquireLock(String taskName) and public static void releaseLock(String taskName). Before a Task runs, it will need to call the acquireLock method of the TaskMonitor. If this method returns True, it's safe for the Task to run. If it returns False, then it's not safe for the Task to run as some other instance of this Task in the cluster is already executing. The key to understanding the TaskMonitor class is to understand the ACQUIRE_LOCK SQL query on lines 5-7.

What needs to be done is to determine if the Task in question, as identified by the field TaskName, is currently Idle, and if so, change its Status to Active. The crucial aspect of this is that it needs to happen atomically, that is, it must all happen as one single step. That's why we use a single update statement instead of writing both a select statement to see if the Task is currently Idle and an update to change its Status. In the case where we use the select statement first, it would be possible for the same select statement to be run by the other machines in the cluster before the update is executed. This would result in multiple Tasks running since they would all see the Idle state. By performing the entire process in an update statement, we take advantage of the automatic exclusive row locking that takes place in the database whenever an update statement is executed.

Now that we understand how the ACQUIRE_LOCK query works, the rest of the acquireLock method of the TaskMonitor is easy to follow. On line 23 the query is executed and the results are examined. The executeUpdate method returns the number of rows that were affected by the query. When the ACQUIRE_LOCK query successfully changes the Task from Idle to Active (as will be the case when this particular query is the first one in the cluster to run), one row will have been affected and the lockAcquired flag will be set to true. Otherwise, no rows will be affected and the lockAcquired flag will remain false.

The releaseLock method of TaskMonitor is meant to be called when a Task has finished executing. This method simply changes the status of the Task back to Idle. Both the releaseLock and the acquireLock methods also update the StatusTime field with the current date and time for record-keeping purposes.

One final note on the TaskMonitor class: the getConnection method shown in lines 75-85 should be upgraded before placing this class into production. As written, the method creates a connection to an instance of a MySQL database. A better practice in production would be to retrieve a connection from an existing connection pool.

Together the Tasks database table and the TaskMonitor class provide a framework for ensuring that only one instance of a given Task is running at a particular time, no matter how many instances of the application are running within the clustered system. At this point we're ready to create our report generating Task.

Because we're concerned with managing Tasks in a clustered environment, and not with creating reports or using the javax.mail APIs, we'll create a simple Task, called ReportTask, to illustrate the concept. Because we want this Task to execute automatically on a schedule, we need to extend java.util.TimerTask. TimerTask is an abstract class that has one method that we have to implement, public void run(). This is the method where all the Task's work is done. For our simple example, ReportTask, we'll output some text to show that the Task is running. The code for this class is shown below.

1) import java.util.TimerTask;
2) public class ReportTask extends TimerTask {
3) public void run() {
4) if(TaskMonitor.acquireLock("ReportTask") == false)
5) return;
6) System.out.println("Creating report to be emailed...");
7) TaskMonitor.releaseLock("ReportTask");
8) }
9) }

The key thing to note here is that before the ReportTask actually performs its work, printing some text in this case, it first attempts to acquire the lock for this Task by making the call to acquireLock on line 4. If it fails to acquire the lock, it simply returns without performing its work. However, if it does successfully acquire the lock, then it's free to perform its work and it goes ahead and prints out its message on line 6. Once the Task is complete, it's vital that the lock be released. This is accomplished by calling releaseLock on line 7. If the lock is never released, this Task will never run again on any machine in the cluster. Ensuring that the lock is properly released is clearly not an issue with this simple example; however, in more complex tasks it can be tricky. Consider a Task where several different error conditions could cause the Task to terminate before running to completion. There are now potentially several places where the lock will have to be released.

At this point, you've probably noticed a serious problem with our Task. We never populated the Tasks table with any tasks. As things stand, our ReportTask will never be able to acquire a lock and will never run, and this step needs to take place for every Task that's going to be managed in this way. To rectify this situation we need to insert the ReportTask information into the Tasks table using the following SQL script:

insert into Tasks values (‘ReportTask', ‘Idle', null);

We've nearly finished setting up our system for managing clustered tasks. So far we've created an external resource and a TimerTask called ReportTask that will run in our cluster. All that remains to be done is to create a Timer for running our ReportTask. Because we want to start the Timer for our task as soon as the application starts, we'll create a servlet called StartupServlet that does the work of creating our Timer. We will ensure that StartupServlet is loaded immediately by adding the following lines to web.xml:

<servlet>
<servlet-name>StartupServlet</servlet-name>
<display-name>StartupServlet</display-name>
<description>Used to create the Timers</description>
<servlet-class>StartupServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

As our simple StartupServlet is not designed to handle requests, it doesn't need to override any method other than init(). When we create the Timer for running our ReportTask, it's important that we use one of the overloaded constructors to create the Timer as a daemon thread. If we don't specify that the Timer should be a daemon thread and use the default no argument constructor, the Timer will not be a daemon thread. By making it a daemon thread, we ensure that the Timer will continue to run for as long as our Web application runs and that it will terminate when the application terminates. We don't want to try to generate reports if the application has been stopped for some reason.

After calculating how many milliseconds are in a day (we want our ReportTask to run once a day), we schedule the ReportTask to run daily, starting now. On line 12 we place the Timer that we created in the ServletContext. While this is not strictly necessary to keep the ReportTask running, by keeping a reference to the Timer available we are able to check easily on the status of the ReportTimer or cancel it entirely should the need arise.

With the StartupServlet in place, we now have a very basic but workable system for running scheduled Tasks in a clustered environment, without having to worry about the same task running on all of the machines in the cluster simultaneously. It's important to note that if this scheme is used as presented and the tasks being executed complete in a very short period of time, you could still see duplicate executions of the same task if the clocks on all of the machines are not in synch with each other. While it is possible to extend this approach to address this problem, it's outside the scope of this article. With a little bit of effort, this system can also be extended to allow for such things as programmatic modification of the running tasks, robust error handling, and recovery of frozen tasks.

More Stories By Clark D. Richey Jr.

Clark is a principal consultant with the RABA Technologies RiSC group for advanced research and development. In his spare time, he teaches the Java platform to students at Loyola College, where as an associate professor, he shares his experiences with much enthusiasm. Clark is the founder of both JUGaccino, a Maryland-based JUG, and the StopLight and PermissionSniffer open source projects. He is also involved in implementing highly scalable, highly secure, service-oriented architectures using Jini.

Comments (2) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
cbellonch 05/12/05 11:04:17 AM EDT

Hi,
Thanks for the article, it would be useful for our project. We've tried to download the code in:
· www.sys-con.com/java/sourcec.cfm
· http://www.sys-con.com/java/archives3/0903/Richey0903.zip

without success, are the links correct?

tbb 03/10/04 08:44:10 AM EST

I believe a class that implements ServletContextListener would be a better way to solve this problem than a servlet that loads on startup. (If your servlet container implements the servlet 2.3+ spec).

@ThingsExpo Stories
The Internet of Things (IoT) is making everything it touches smarter – smart devices, smart cars and smart cities. And lucky us, we’re just beginning to reap the benefits as we work toward a networked society. However, this technology-driven innovation is impacting more than just individuals. The IoT has an environmental impact as well, which brings us to the theme of this month’s #IoTuesday Twitter chat. The ability to remove inefficiencies through connected objects is driving change throughout every sector, including waste management. BigBelly Solar, located just outside of Boston, is trans...
SYS-CON Events announced today that Matrix.org has been named “Silver Sponsor” of Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Matrix is an ambitious new open standard for open, distributed, real-time communication over IP. It defines a new approach for interoperable Instant Messaging and VoIP based on pragmatic HTTP APIs and WebRTC, and provides open source reference implementations to showcase and bootstrap the new standard. Our focus is on simplicity, security, and supporting the fullest feature set.
Predicted by Gartner to add $1.9 trillion to the global economy by 2020, the Internet of Everything (IoE) is based on the idea that devices, systems and services will connect in simple, transparent ways, enabling seamless interactions among devices across brands and sectors. As this vision unfolds, it is clear that no single company can accomplish the level of interoperability required to support the horizontal aspects of the IoE. The AllSeen Alliance, announced in December 2013, was formed with the goal to advance IoE adoption and innovation in the connected home, healthcare, education, aut...
SYS-CON Events announced today that Red Hat, the world's leading provider of open source solutions, will exhibit at Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Red Hat is the world's leading provider of open source software solutions, using a community-powered approach to reliable and high-performing cloud, Linux, middleware, storage and virtualization technologies. Red Hat also offers award-winning support, training, and consulting services. As the connective hub in a global network of enterprises, partners, a...

SUNNYVALE, Calif., Oct. 20, 2014 /PRNewswire/ -- Spansion Inc. (NYSE: CODE), a global leader in embedded systems, today added 96 new products to the Spansion® FM4 Family of flexible microcontrollers (MCUs). Based on the ARM® Cortex®-M4F core, the new MCUs boast a 200 MHz operating frequency and support a diverse set of on-chip peripherals for enhanced human machine interfaces (HMIs) and machine-to-machine (M2M) communications. The rich set of periphera...

The only place to be June 9-11 is Cloud Expo & @ThingsExpo 2015 East at the Javits Center in New York City. Join us there as delegates from all over the world come to listen to and engage with speakers & sponsors from the leading Cloud Computing, IoT & Big Data companies. Cloud Expo & @ThingsExpo are the leading events covering the booming market of Cloud Computing, IoT & Big Data for the enterprise. Speakers from all over the world will be hand-picked for their ability to explore the economic strategies that utility/cloud computing provides. Whether public, private, or in a hybrid form, clo...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace.
Be Among the First 100 to Attend & Receive a Smart Beacon. The Physical Web is an open web project within the Chrome team at Google. Scott Jenson leads a team that is working to leverage the scalability and openness of the web to talk to smart devices. The Physical Web uses bluetooth low energy beacons to broadcast an URL wirelessly using an open protocol. Nearby devices can find all URLs in the room, rank them and let the user pick one from a list. Each device is, in effect, a gateway to a web page. This unlocks entirely new use cases so devices can offer tiny bits of information or simple i...
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, will address the big issues involving these technologies and, more important, the results they will achieve. How important are public, private, and hybrid cloud to the enterprise? How does one define Big Data? And how is the IoT tying all this together?
TechCrunch reported that "Berlin-based relayr, maker of the WunderBar, an Internet of Things (IoT) hardware dev kit which resembles a chunky chocolate bar, has closed a $2.3 million seed round, from unnamed U.S. and Switzerland-based investors. The startup had previously raised a €250,000 friend and family round, and had been on track to close a €500,000 seed earlier this year — but received a higher funding offer from a different set of investors, which is the $2.3M round it’s reporting."
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital busines...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The Internet of Things needs an entirely new security model, or does it? Can we save some old and tested controls for the latest emerging and different technology environments? In his session at Internet of @ThingsExpo, Davi Ottenheimer, EMC Senior Director of Trust, will review hands-on lessons with IoT devices and reveal privacy options and a new risk balance you might not expect.
IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is new, what is old, and what the future may hold.
Swiss innovators dizmo Inc. launches its ground-breaking software, which turns any digital surface into an immersive platform. The dizmo platform seamlessly connects digital and physical objects in the home and at the workplace. Dizmo breaks down traditional boundaries between device, operating systems, apps and software, transforming the way users work, play and live. It supports orchestration and collaboration in an unparalleled way enabling any data to instantaneously be accessed on any surface, anywhere and made interactive. Dizmo brings fantasies as seen in Sci-fi movies such as Iro...
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other mach...
This Internet of Nouns trend is still in the early stages and many of our already connected gadgets do provide human benefits over the typical infotainment. Internet of Things or IoT. You know, where everyday objects have software, chips, and sensors to capture data and report back. Household items like refrigerators, toilets and thermostats along with clothing, cars and soon, the entire home will be connected. Many of these devices provide actionable data - or just fun entertainment - so people can make decisions about whatever is being monitored. It can also help save lives.