Welcome!

Java IoT Authors: Elizabeth White, Liz McMillan, Pat Romanski, Carmen Gonzalez, Yeshim Deniz

Related Topics: Java IoT

Java IoT: Article

Clustered Timers

For Robust Scalable Systems

Often, when someone asks how we are going to scale the Web application we're about to develop, we look at them, smile, and say, "Not a problem - we'll just cluster the application servers." Clustering our application across multiple servers provides us with the ability to handle large volumes of traffic and to scale systems by adding additional servers to the cluster.

In addition to providing scalability, application clusters make the system more robust by allowing for automatic system failover when a server fails. This way when one server goes down the application continues to run, albeit with slightly decreased performance. While it is true that the current generation of application servers makes it relatively pain-free to create a cluster, there are still several significant, if often overlooked, design issues that must be taken into account now that the system is clustered.

When we run our Web application in a cluster, we have the exact same software running on each machine in the cluster. While this eliminates a host of configuration management difficulties, it does create other problems. While we don't have to write different code for every possible machine in the cluster, there are times when this simplicity actually makes things more complex; the running of scheduled tasks is typically one of these areas. Scheduled tasks are used to execute procedures that need to run at certain fixed times or at fixed intervals. Typical examples of scheduled tasks within a Web application are report-generation tasks and tasks that send data to external systems that are only available within a certain time frame.

To understand why clustering affects how we design our application to handle scheduled tasks, let's consider a generic e-commerce Web application. To allow management to analyze sales trends, profits, inventory, etc., the system has been set up to periodically compile a set of reports and e-mail them to management. Clearly, management doesn't want to receive multiple e-mails containing the same reports, yet this is what we will get if we simply write a scheduled task and then cluster our system. When the appointed time to run the report comes up, all machines in the cluster will generate the same report and send it to management. This can be seen visually in Figure 1.

Perhaps the most straightforward way to solve this problem is to package the code that runs the scheduled tasks into a separate JAR file within the EAR file that contains the WAR file for the Web application. This EAR file is deployed to all the servers in the cluster; however, the JAR containing the scheduled tasks is configured to run on only one of the servers. This solves the problem by preventing the scheduled tasks from ever running on multiple machines. However, there is a significant downside to these solutions. First, you have now created additional configuration management problems. You need to carefully track which servers are set up to run the scheduled tasks and the exact deployment procedures that were used so that when additional servers are added to the cluster, the application is properly deployed on those servers.

The second problem is that you have effectively taken the scheduled tasks out of the cluster. Now, if the machine that is set up with the scheduled tasks fails, or its connection to the network fails, there is no backup or failover system. The tasks won't run. The remainder of this article investigates solutions to this problem that allow the scheduled tasks to remain part of the cluster and don't involve additional configuration management.

To stop every system in the cluster from performing the same scheduled task, report generation in this case, we have to utilize something outside of the application server cluster to track the state of our scheduled task. A perfect candidate for maintaining the state of our scheduled tasks is a shared database, and since nearly all applications already have access to a shared database, this is the resource we will use to solve this problem in our example (see Figure 2). It's worth mentioning that while a shared database is an ideal resource for solving this problem, it's not the only option. The solution presented here could be adapted to use flat files or some other shared resource external to the cluster.

Our external resource, the database in this case, will act as a mediator between competing machines in the cluster. We will create a table in the database that tracks scheduled tasks and their status. When a machine in the cluster wants to run one of the scheduled tasks, it first checks the status of that task in the database to see if some other machine is already running that task. If no other machine is running the task, the status of the task will be updated and that machine will run the task.

Another way of thinking about this solution is to think in terms of a concurrent method running on a single machine. If we see the scheduled task in these terms, it becomes clear that the best way to keep multiple threads from running the task at the same time is to use some sort of semaphore. Again, if this was a single method on one machine, we could easily do this by creating a synchronized block around the code that we wanted to protect. When a thread first attempts to enter the synchronized block, it has to attempt to get the lock. If it fails to get the lock, it can't run. In our distributed system, we are using the database as the lock.

We will call our database table "Tasks" and it will have three columns. The first column will be the name of the task, the second the status of the task, and the third the date and time that the task last changed status. The generic SQL script to produce this table is shown below.

CREATE TABLE 'Tasks' (
'TaskName' varchar(50) NOT NULL,
'Status' varchar(25) NOT NULL,
'StatusTime' datetime,
PRIMARY KEY ('TaskName')
) ;

Now that we have created our database table to serve as our mediator, we can create the class that accesses this table in order to determine if a particular instance of a Task can execute. We'll call this class TaskMonitor. (The source code for this article can be downloaded from www.sys-con.com/java/sourcec.cfm.) The class exposes two methods to the public, public static boolean acquireLock(String taskName) and public static void releaseLock(String taskName). Before a Task runs, it will need to call the acquireLock method of the TaskMonitor. If this method returns True, it's safe for the Task to run. If it returns False, then it's not safe for the Task to run as some other instance of this Task in the cluster is already executing. The key to understanding the TaskMonitor class is to understand the ACQUIRE_LOCK SQL query on lines 5-7.

What needs to be done is to determine if the Task in question, as identified by the field TaskName, is currently Idle, and if so, change its Status to Active. The crucial aspect of this is that it needs to happen atomically, that is, it must all happen as one single step. That's why we use a single update statement instead of writing both a select statement to see if the Task is currently Idle and an update to change its Status. In the case where we use the select statement first, it would be possible for the same select statement to be run by the other machines in the cluster before the update is executed. This would result in multiple Tasks running since they would all see the Idle state. By performing the entire process in an update statement, we take advantage of the automatic exclusive row locking that takes place in the database whenever an update statement is executed.

Now that we understand how the ACQUIRE_LOCK query works, the rest of the acquireLock method of the TaskMonitor is easy to follow. On line 23 the query is executed and the results are examined. The executeUpdate method returns the number of rows that were affected by the query. When the ACQUIRE_LOCK query successfully changes the Task from Idle to Active (as will be the case when this particular query is the first one in the cluster to run), one row will have been affected and the lockAcquired flag will be set to true. Otherwise, no rows will be affected and the lockAcquired flag will remain false.

The releaseLock method of TaskMonitor is meant to be called when a Task has finished executing. This method simply changes the status of the Task back to Idle. Both the releaseLock and the acquireLock methods also update the StatusTime field with the current date and time for record-keeping purposes.

One final note on the TaskMonitor class: the getConnection method shown in lines 75-85 should be upgraded before placing this class into production. As written, the method creates a connection to an instance of a MySQL database. A better practice in production would be to retrieve a connection from an existing connection pool.

Together the Tasks database table and the TaskMonitor class provide a framework for ensuring that only one instance of a given Task is running at a particular time, no matter how many instances of the application are running within the clustered system. At this point we're ready to create our report generating Task.

Because we're concerned with managing Tasks in a clustered environment, and not with creating reports or using the javax.mail APIs, we'll create a simple Task, called ReportTask, to illustrate the concept. Because we want this Task to execute automatically on a schedule, we need to extend java.util.TimerTask. TimerTask is an abstract class that has one method that we have to implement, public void run(). This is the method where all the Task's work is done. For our simple example, ReportTask, we'll output some text to show that the Task is running. The code for this class is shown below.

1) import java.util.TimerTask;
2) public class ReportTask extends TimerTask {
3) public void run() {
4) if(TaskMonitor.acquireLock("ReportTask") == false)
5) return;
6) System.out.println("Creating report to be emailed...");
7) TaskMonitor.releaseLock("ReportTask");
8) }
9) }

The key thing to note here is that before the ReportTask actually performs its work, printing some text in this case, it first attempts to acquire the lock for this Task by making the call to acquireLock on line 4. If it fails to acquire the lock, it simply returns without performing its work. However, if it does successfully acquire the lock, then it's free to perform its work and it goes ahead and prints out its message on line 6. Once the Task is complete, it's vital that the lock be released. This is accomplished by calling releaseLock on line 7. If the lock is never released, this Task will never run again on any machine in the cluster. Ensuring that the lock is properly released is clearly not an issue with this simple example; however, in more complex tasks it can be tricky. Consider a Task where several different error conditions could cause the Task to terminate before running to completion. There are now potentially several places where the lock will have to be released.

At this point, you've probably noticed a serious problem with our Task. We never populated the Tasks table with any tasks. As things stand, our ReportTask will never be able to acquire a lock and will never run, and this step needs to take place for every Task that's going to be managed in this way. To rectify this situation we need to insert the ReportTask information into the Tasks table using the following SQL script:

insert into Tasks values (‘ReportTask', ‘Idle', null);

We've nearly finished setting up our system for managing clustered tasks. So far we've created an external resource and a TimerTask called ReportTask that will run in our cluster. All that remains to be done is to create a Timer for running our ReportTask. Because we want to start the Timer for our task as soon as the application starts, we'll create a servlet called StartupServlet that does the work of creating our Timer. We will ensure that StartupServlet is loaded immediately by adding the following lines to web.xml:

<servlet>
<servlet-name>StartupServlet</servlet-name>
<display-name>StartupServlet</display-name>
<description>Used to create the Timers</description>
<servlet-class>StartupServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

As our simple StartupServlet is not designed to handle requests, it doesn't need to override any method other than init(). When we create the Timer for running our ReportTask, it's important that we use one of the overloaded constructors to create the Timer as a daemon thread. If we don't specify that the Timer should be a daemon thread and use the default no argument constructor, the Timer will not be a daemon thread. By making it a daemon thread, we ensure that the Timer will continue to run for as long as our Web application runs and that it will terminate when the application terminates. We don't want to try to generate reports if the application has been stopped for some reason.

After calculating how many milliseconds are in a day (we want our ReportTask to run once a day), we schedule the ReportTask to run daily, starting now. On line 12 we place the Timer that we created in the ServletContext. While this is not strictly necessary to keep the ReportTask running, by keeping a reference to the Timer available we are able to check easily on the status of the ReportTimer or cancel it entirely should the need arise.

With the StartupServlet in place, we now have a very basic but workable system for running scheduled Tasks in a clustered environment, without having to worry about the same task running on all of the machines in the cluster simultaneously. It's important to note that if this scheme is used as presented and the tasks being executed complete in a very short period of time, you could still see duplicate executions of the same task if the clocks on all of the machines are not in synch with each other. While it is possible to extend this approach to address this problem, it's outside the scope of this article. With a little bit of effort, this system can also be extended to allow for such things as programmatic modification of the running tasks, robust error handling, and recovery of frozen tasks.

More Stories By Clark D. Richey Jr.

Clark is a principal consultant with the RABA Technologies RiSC group for advanced research and development. In his spare time, he teaches the Java platform to students at Loyola College, where as an associate professor, he shares his experiences with much enthusiasm. Clark is the founder of both JUGaccino, a Maryland-based JUG, and the StopLight and PermissionSniffer open source projects. He is also involved in implementing highly scalable, highly secure, service-oriented architectures using Jini.

Comments (2) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
cbellonch 05/12/05 11:04:17 AM EDT

Hi,
Thanks for the article, it would be useful for our project. We've tried to download the code in:
· www.sys-con.com/java/sourcec.cfm
· http://www.sys-con.com/java/archives3/0903/Richey0903.zip

without success, are the links correct?

tbb 03/10/04 08:44:10 AM EST

I believe a class that implements ServletContextListener would be a better way to solve this problem than a servlet that loads on startup. (If your servlet container implements the servlet 2.3+ spec).

@ThingsExpo Stories
SYS-CON Events announced today that Commvault, a global leader in enterprise data protection and information management, has been named “Bronze Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Commvault is a leading provider of data protection and information management...
In his session at 18th Cloud Expo, Bruce Swann, Senior Product Marketing Manager at Adobe, will discuss how the Adobe Marketing Cloud can help marketers embrace opportunities for personalized, relevant and real-time customer engagement across offline (direct mail, point of sale, call center) and digital (email, website, SMS, mobile apps, social networks, connected objects). Bruce Swann has more than 15 years of experience working with digital marketing disciplines like web analytics, social med...
SYS-CON Events announced today that Tintri Inc., a leading producer of VM-aware storage (VAS) for virtualization and cloud environments, will exhibit at the 18th International CloudExpo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, New York, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today Object Management Group® has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that ContentMX, the marketing technology and services company with a singular mission to increase engagement and drive more conversations for enterprise, channel and SMB technology marketers, has been named “Sponsor & Exhibitor Lounge Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York City, New York. “CloudExpo is a great opportunity to start a conversation with new prospects, but what happens after the...
Companies can harness IoT and predictive analytics to sustain business continuity; predict and manage site performance during emergencies; minimize expensive reactive maintenance; and forecast equipment and maintenance budgets and expenditures. Providing cost-effective, uninterrupted service is challenging, particularly for organizations with geographically dispersed operations.
The IoTs will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm and share the must-have mindsets for removing complexity from the development proc...
What a difference a year makes. Organizations aren’t just talking about IoT possibilities, it is now baked into their core business strategy. With IoT, billions of devices generating data from different companies on different networks around the globe need to interact. From efficiency to better customer insights to completely new business models, IoT will turn traditional business models upside down. In the new customer-centric age, the key to success is delivering critical services and apps wit...
Join us at Cloud Expo | @ThingsExpo 2016 – June 7-9 at the Javits Center in New York City and November 1-3 at the Santa Clara Convention Center in Santa Clara, CA – and deliver your unique message in a way that is striking and unforgettable by taking advantage of SYS-CON's unmatched high-impact, result-driven event / media packages.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, will provide an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life ...
As cloud and storage projections continue to rise, the number of organizations moving to the cloud is escalating and it is clear cloud storage is here to stay. However, is it secure? Data is the lifeblood for government entities, countries, cloud service providers and enterprises alike and losing or exposing that data can have disastrous results. There are new concepts for data storage on the horizon that will deliver secure solutions for storing and moving sensitive data around the world. ...
SYS-CON Events announced today that BMC Software has been named "Siver Sponsor" of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2015 at the Javits Center in New York, New York. BMC is a global leader in innovative software solutions that help businesses transform into digital enterprises for the ultimate competitive advantage. BMC Digital Enterprise Management is a set of innovative IT solutions designed to make digital business fast, seamless, and optimized from mainframe to mo...
SYS-CON Events announced today that MobiDev will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. MobiDev is a software company that develops and delivers turn-key mobile apps, websites, web services, and complex software systems for startups and enterprises. Since 2009 it has grown from a small group of passionate engineers and business managers to a full-scale mobile software company with over 200 develope...
WebRTC is bringing significant change to the communications landscape that will bridge the worlds of web and telephony, making the Internet the new standard for communications. Cloud9 took the road less traveled and used WebRTC to create a downloadable enterprise-grade communications platform that is changing the communication dynamic in the financial sector. In his session at @ThingsExpo, Leo Papadopoulos, CTO of Cloud9, will discuss the importance of WebRTC and how it enables companies to fo...
SYS-CON Events announced today that MangoApps will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. MangoApps provides modern company intranets and team collaboration software, allowing workers to stay connected and productive from anywhere in the world and from any device. For more information, please visit https://www.mangoapps.com/.
SYS-CON Events announced today TechTarget has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. TechTarget is the Web’s leading destination for serious technology buyers researching and making enterprise technology decisions. Its extensive global networ...
SYS-CON Events announced today that EastBanc Technologies will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. EastBanc Technologies has been working at the frontier of technology since 1999. Today, the firm provides full-lifecycle software development delivering flexible technology solutions that seamlessly integrate with existing systems – whether on premise or cloud. EastBanc Technologies partners with p...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, wh...
SYS-CON Events announced today that Alert Logic, Inc., the leading provider of Security-as-a-Service solutions for the cloud, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Alert Logic, Inc., provides Security-as-a-Service for on-premises, cloud, and hybrid infrastructures, delivering deep security insight and continuous protection for customers at a lower cost than traditional security solutions. Ful...
The IoT is changing the way enterprises conduct business. In his session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, discuss how businesses can gain an edge over competitors by empowering consumers to take control through IoT. We'll cite examples such as a Washington, D.C.-based sports club that leveraged IoT and the cloud to develop a comprehensive booking system. He'll also highlight how IoT can revitalize and restore outdated business models, making them profitable...