Welcome!

Java Authors: Liz McMillan, Pat Romanski, Yeshim Deniz, Carmen Gonzalez, Yakov Fain

Related Topics: Java

Java: Article

Scalability of J2EE Applications: Effective Caching's Key

Scalability of J2EE Applications: Effective Caching's Key

Sooner or later all architects and developers of large-scale J2EE products face the same problem: their software's response time gets slower and slower, and the scalability of their solution is ending. This article investigates caching solutions that promise to help; sheds some light on their limitations; and describes an easy, lightweight, and effective caching mechanism that solves most of the issues.

Note: This article does not assess all possible ways of caching nor does it take solutions such as commercial external caching products into account.

The Problem
Whenever we build distributed software for a large scale - whether it's J2EE or not - we face the same challenge: keep response or transaction times low while increasing user load. The main problem is that essentially all software systems scale exponentially at some point (see Figure 1). Architecting and implementing a solution that keeps scalability linear and leaves enough room for increasing load as the business grows is a difficult task that requires experience.

A good architect keeps traffic, transaction times and volume, persistence layer design, and caching in mind when he or she drafts the first layout of a new architecture. Understanding concurrent access by n users on m data items is one of the major things an architect looks for.

Possible Solutions
Minimizing traffic in all tiers is the primary objective when creating a scalable solution. Figure 2 shows a typical three-tier system.

While the persistence tier in modern databases already provides significant caching capabilities, it's rarely enough for large-scale systems. What do other mechanisms do to increase performance and scalability, and to what tier/layer do they apply?

Stored Procedures?
I mention this because aside from caching, one suggestion I always hear is using stored procedures. I'd like to encourage everyone to consider different options. Using stored procedures splits the persistence layer over two physical tiers and usually improves only single user performance.

If you look at your application server's console, you might see, for example, that of the 500ms a servlet or JSP request takes, only 100ms are spent on the DB transaction side. Squeezing another 30ms out by using stored procedures rarely makes your system scale - you still need DB connections, cursors, and other resources.

Persistence Layer Caching
The easiest way to cache in J2EE systems is with entity beans (if we say entity beans let's only talk about CMP for the moment); I can hear the readers moan, but the fact remains: they are the only "good" way of caching in J2EE solutions. Why? Because the maximum cache size is controllable by setting the maximum number of beans and because the resource is in control of the container, as they can be passivated if memory is short. Usually, they are the only resource that is clusterable as well.

Why would most developers and architects say entity beans are bad for your performance? Because they are. In a single request use case, they have significant overhead compared to direct JDBC. But even in scalability assessments, entity beans often come out last, because their usage as a cache is determined by the possible cache hit rate, just like any other cache. The cache hit rate is determined by the number of reads versus the number of data items versus the number of writes.

Ultimately, if you use entity beans you really need to know what you're doing. While that might be true for any out-of-the-box mechanisms a container provides, it's especially true for entity beans. It's easy to get it wrong and a lot of containers have less than mediocre support for entity beans.

Entity beans make sense if:

  • Your reads and writes are few, then scalability is not your concern anyway and CMP EJBs are just as convenient.
  • Your reads are many, your writes and number of data items are few - this means maximum cache hit rate - you have just a few items to cache (most containers only perform well with a few thousand entity bean instances per CPU), and it rarely becomes stale because you hardly write.
In all other cases, entity beans just make things worse due to their management overhead. Figure 3 shows that cache efficiencies (like entity beans) depend on the number of reads versus the number of writes versus the number of rows (which is an oversimplified perception and not real math). Caching with entity beans works well within the green area.

One important fact needs to be considered as well: some application servers (WLS 6, WebSphere) do not support EntityBean clustering/ caching in clustered infrastructures. In other words, they often support only the caching of read-only entity beans if you run a cluster, which rules straight CMP out completely to increase scalability.

Let's have a quick look at BMP (mainly read-only or read-mostly BMP). These type of entity beans can be used to solve the problem of too many entity bean instances by allowing you to change the caching granularity: while CMP caches on a per-data-row basis, RO BMPs can essentially cache on any desired granularity level and are basically similar to the caching mechanism I'll discuss later. However, they still have a few disadvantages, such as the entity bean management overhead or (depending on your container implementation) the fact that they usually are - like all entity beans - single threaded: only one request at a time can access the cache.

In all other cases (mixed reads/ writes, lots of data, few reads many writes, etc.), how do we make our software scalable?

Web Tier Caching Using HTTP Session
If persistence layer caching through entity beans is ruled out, we have two tiers left where we could cache.

The most obvious choice developers often make is HTTP session caching. Since it caches at the uppermost tier, it should be most effective at minimizing traffic, right? However, using the HTTP session as a cache makes architects of large-scale systems shudder.

First, it caches on a per-session basis: it helps if one user performs the same or similar action 5,000 times but not if 5,000 users perform one action.

Second, the cache invalidation and GC is based on the session time-out - usually something like 60 minutes. Even if a user works for 10 minutes in your system, the data is cached for 60 minutes, which makes the cache size six times as big as it needs to be, unless you invalidate your session manually.

Finally, it removes one important task from the container: resource management. Since this cache cannot be cleared by the container, it often causes problems since the container cannot GC these objects even if memory resources become short. The container's GC cycles become more frequent and the GC has to walk over a large set of mainly stale objects in your session, making the cycles longer than they need to be.

Singletons and Application Context
The last place to cache is in the business layer (the following mechanism could be used in the Web tier as well). Since the HTTP session is not very effective at caching in high-traffic systems, the next best choice is using singletons to cache objects or data from the database.

Singletons (just like the application context) have the advantage that they again cache for all requests, but still are not a container-managed resource. Frequently singleton caches are implemented as a plain Hashtable and are unlimited in size, which causes almost the same problems as HTTP session caching.

I'd like to recall a simple but effective caching strategy that is singleton-based and uses a container such as a mechanism of resource management to keep resource usage to a minimum.

LRU Caching
The strategy used is called LRU (least recently used), also known as MRU (most recently used). Essentially, it only caches objects that are used frequently by limiting the cache size to a fixed number of items (hence the name), just like a container pool size for EJBs, thus keeping resource utilization controlled.

How does this work? Essentially it's a stack: if an object is requested from the stack and it's not there (cache miss), it's inserted at the very top. If your cache size is 1,000 items and the cache is full, the last item will fall off the stack and effectively be removed from the cache (see Figure 4).

In case an object is on the cache, it will be removed and reinserted at the top (see Figure 5).

This way, the most often used items will remain at the top, and the least used items will eventually drop off the stack. You can even keep track of your hits and misses easily and either query this information to reconfigure your cache or grow and shrink the maximum size dynamically. This way, you minimize usage of resources and maximize cache effectiveness. The stack implementation depends on your needs: choose an unsynchronized model if necessary to allow concurrent reads and minimize overhead.

Cache Invalidation
This cache works best in read-only or read-mostly scenarios. Unless you implement write-back or other write cache synchronization schemes or don't care that the cache is out of sync with the data source, you'll have to invalidate the cache, which decreases the cache hit rate and efficiency. For example, you can implement write-through caches fairly easily using dynamic proxy classes (JDK 1.3 introduced support for dynamic proxies) but that is a topic for another article.

Singleton-based LRU caching still has the typical problem of all singleton-based caches: a singleton is not a singleton in distributed systems (J2EE for that matter) but unique per classloader or server context (if you're lucky), and it's not kept in sync in clustered environments. There are, of course, mechanisms to implement the synchronization of distributed resources; some of them are difficult to implement or have scalability or availability issues; some work just fine. Distributed caching is not easy and if your requirements force you to go down this path, you might be well served choosing a commercial caching product.

The fact that you have several unsynchronized cache copies in clustered environments can be a big problem. The easy solution is using timed caches (just like read-only entity beans), which means that if a cached object is a certain age, it's considered stale and will be dropped from the cache. This is sufficient in most cases, but let's look at the following scenario.

Let's assume our invalidation time is 30 minutes (an object older than 30 minutes is considered stale). Cache A caches an object at 11:15, Cache B at 11:35. If the data item the cache is referring to is refreshed in the database at 11:40, Cache A will have the correct value at 11:45 when it expires but Cache B won't have it until 12:05 (see Figure 6). The problem now is that for 20 minutes you get different results - depending on which server you hit and on the use case this can be a big problem.

The solution for these cases is a timed cache that is refreshed at fixed points in time every n minutes, like at 12:00, 12:30, 1:00, etc. The advantage is that now all your caches are somewhat in sync (as in sync as the clocks on your servers are). The disadvantage is that the load on your servers increases quite a bit every time the caches are cleared, because they're cleared completely.

Which way you go depends on your business requirements; adjusting your refresh cycles largely depends on your data update frequency versus the cache hit rate you would like to achieve.

Of course, there are a variety of other ways to keep distributed copies of caches in sync, but these are not easy to implement and have a variety of side effects to consider.

Open Source and Commercial Caching Implementations
If your caching needs are more complex, or if you just don't want to "roll your own," you might want to give JSR 107 a look. This is the JCache JSR that specifies a distributed, resource-managed, Java-based cache. Even though little progress has been made to provide a production-ready implementation, there are several open source projects and products that are close to a JCache implementation and might provide what you need.

Commercial caching products should be considered if your caching requirements are complex (clustered environments, etc.). As mentioned earlier, distributed caching is not as easy at it seems and relying on an enterprise-class product often saves time and trouble.

Building a scalable solution often depends on making the right decisions in persistence mechanism and in caching. How, when, and where to cache is the trick; I hope this article helped you make the right decision.

References

  • JSR 104: www.jcp.org/en/jsr/detail?id=107
  • JCS and JCache at Apache: http://jakarta.apache.org/turbine/jcs/JCSandJCACHE.html
  • More Stories By Stefan Piesche

    Stefan Piesche is a Principal Architect for the Cobalt Group (HQ in Seattle) responsible for large-scale, distributed systems based on J2EE. In the past years I worked on several large-scale systems in Europe in the financial and airline industry.

    Comments (15)

    Share your thoughts on this story.

    Add your comment
    You must be signed in to add a comment. Sign-in | Register

    In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


    @ThingsExpo Stories
    WebRTC defines no default signaling protocol, causing fragmentation between WebRTC silos. SIP and XMPP provide possibilities, but come with considerable complexity and are not designed for use in a web environment. In his session at Internet of @ThingsExpo, Matthew Hodgson, technical co-founder of the Matrix.org, will discuss how Matrix is a new non-profit Open Source Project that defines both a new HTTP-based standard for VoIP & IM signaling and provides reference implementations.

    SUNNYVALE, Calif., Oct. 20, 2014 /PRNewswire/ -- Spansion Inc. (NYSE: CODE), a global leader in embedded systems, today added 96 new products to the Spansion® FM4 Family of flexible microcontrollers (MCUs). Based on the ARM® Cortex®-M4F core, the new MCUs boast a 200 MHz operating frequency and support a diverse set of on-chip peripherals for enhanced human machine interfaces (HMIs) and machine-to-machine (M2M) communications. The rich set of periphera...

    SYS-CON Events announced today that Aria Systems, the recurring revenue expert, has been named "Bronze Sponsor" of SYS-CON's 15th International Cloud Expo®, which will take place on November 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Aria Systems helps leading businesses connect their customers with the products and services they love. Industry leaders like Pitney Bowes, Experian, AAA NCNU, VMware, HootSuite and many others choose Aria to power their recurring revenue business and deliver exceptional experiences to their customers.
    The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
    The Internet of Things (IoT) is making everything it touches smarter – smart devices, smart cars and smart cities. And lucky us, we’re just beginning to reap the benefits as we work toward a networked society. However, this technology-driven innovation is impacting more than just individuals. The IoT has an environmental impact as well, which brings us to the theme of this month’s #IoTuesday Twitter chat. The ability to remove inefficiencies through connected objects is driving change throughout every sector, including waste management. BigBelly Solar, located just outside of Boston, is trans...
    SYS-CON Events announced today that Matrix.org has been named “Silver Sponsor” of Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Matrix is an ambitious new open standard for open, distributed, real-time communication over IP. It defines a new approach for interoperable Instant Messaging and VoIP based on pragmatic HTTP APIs and WebRTC, and provides open source reference implementations to showcase and bootstrap the new standard. Our focus is on simplicity, security, and supporting the fullest feature set.
    Predicted by Gartner to add $1.9 trillion to the global economy by 2020, the Internet of Everything (IoE) is based on the idea that devices, systems and services will connect in simple, transparent ways, enabling seamless interactions among devices across brands and sectors. As this vision unfolds, it is clear that no single company can accomplish the level of interoperability required to support the horizontal aspects of the IoE. The AllSeen Alliance, announced in December 2013, was formed with the goal to advance IoE adoption and innovation in the connected home, healthcare, education, aut...
    SYS-CON Events announced today that Red Hat, the world's leading provider of open source solutions, will exhibit at Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Red Hat is the world's leading provider of open source software solutions, using a community-powered approach to reliable and high-performing cloud, Linux, middleware, storage and virtualization technologies. Red Hat also offers award-winning support, training, and consulting services. As the connective hub in a global network of enterprises, partners, a...
    The only place to be June 9-11 is Cloud Expo & @ThingsExpo 2015 East at the Javits Center in New York City. Join us there as delegates from all over the world come to listen to and engage with speakers & sponsors from the leading Cloud Computing, IoT & Big Data companies. Cloud Expo & @ThingsExpo are the leading events covering the booming market of Cloud Computing, IoT & Big Data for the enterprise. Speakers from all over the world will be hand-picked for their ability to explore the economic strategies that utility/cloud computing provides. Whether public, private, or in a hybrid form, clo...
    Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
    The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace.
    Be Among the First 100 to Attend & Receive a Smart Beacon. The Physical Web is an open web project within the Chrome team at Google. Scott Jenson leads a team that is working to leverage the scalability and openness of the web to talk to smart devices. The Physical Web uses bluetooth low energy beacons to broadcast an URL wirelessly using an open protocol. Nearby devices can find all URLs in the room, rank them and let the user pick one from a list. Each device is, in effect, a gateway to a web page. This unlocks entirely new use cases so devices can offer tiny bits of information or simple i...
    Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, will address the big issues involving these technologies and, more important, the results they will achieve. How important are public, private, and hybrid cloud to the enterprise? How does one define Big Data? And how is the IoT tying all this together?
    The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
    TechCrunch reported that "Berlin-based relayr, maker of the WunderBar, an Internet of Things (IoT) hardware dev kit which resembles a chunky chocolate bar, has closed a $2.3 million seed round, from unnamed U.S. and Switzerland-based investors. The startup had previously raised a €250,000 friend and family round, and had been on track to close a €500,000 seed earlier this year — but received a higher funding offer from a different set of investors, which is the $2.3M round it’s reporting."
    The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
    All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital busines...
    Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
    The Internet of Things needs an entirely new security model, or does it? Can we save some old and tested controls for the latest emerging and different technology environments? In his session at Internet of @ThingsExpo, Davi Ottenheimer, EMC Senior Director of Trust, will review hands-on lessons with IoT devices and reveal privacy options and a new risk balance you might not expect.
    IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is new, what is old, and what the future may hold.