Click here to close now.



Welcome!

Java IoT Authors: SmartBear Blog, Elizabeth White, Pat Romanski, Jnan Dash, Sanjay Uppal

Related Topics: Java IoT

Java IoT: Article

StAX: Java's XML Pull Parser Specification

An overview

Until recently Java programmers have had three options when wishing to access the XML infoset: they could use DOM, JDOM, or SAX. With the release of the JSR 173 StAX specification, Java programmers now have a fourth option, which gives them the efficiency of SAX with a convenient and extendable programming model. This article explores the rationale behind StAX's pull parsing model and describes how you can use the API to more cleanly create Java code to extract the information you need from your XML document. The article describes StAX's two API flavors, "cursor" and "event," and provides some of the reasons why the specification ended up containing two sets of reading and writing APIs. Example usage of each of the reading APIs and each of the writing APIs will be provided.

Document Streaming vs Document Object Model
When creating code that processes XML documents there are two approaches to dealing with the XML infoset data: object model and streaming. With object model, you first create an in-memory object model tree that holds the complete infoset state for an XML document; once in memory you can freely navigate around the tree and even evaluate arbitrary XPath expressions against the tree. This flexibility comes at a price - the complete details of the XML document must be held in memory as objects for the entire duration of the document processing. The creation of the document object graph requires considerable processor resources and takes up a large memory footprint. This may not be a problem for small XML documents, but for large XML ones memory may become a bottleneck to application performance.

With the streaming approach the XML infoset is processed in a serial manner (as a depth first traversal of the XML infoset tree); once an element has been seen its state is discarded and may be garbage collected. Only the infoset state at the current point of the document is available at any one time, which clearly limits the types of processing that can be done and implies that you need to know what processing you are going to perform before reading in the XML document. If you don't think you will ever need to use XML streaming, try loading a 100 megabyte XML file into your latest application and watch what happens.

Streaming Pull Parsing vs Streaming Push Parsing
If you are creating an application that's memory limited, either because you are running on a constrained device (as in a phone) or your application is simultaneously processing several requests (as in an application server), you need to read your XML documents using a streaming model. In the past you were restricted to using the Simple API for XML (SAX). SAX was the first widely available API for reading XML in Java and provides a very low-level, efficient API that deals directly with the character data in the XML document. SAX uses a push processing model in which the SAX library reads the XML document and calls methods on your application objects as it encounters elements and text within the XML document. Although the SAX API is simple, the code application developers need to create to use SAX is not.

A "pull" parsing alternative to SAX's "push" parsing has lurked in the background for some time, but no longer: the recently ratified StAX specification now standardizes a pull parser for Java. StAX provides an alternative processing model where you call methods on the parser at your leisure and move the processing along at your command. The key difference here is that with SAX you don't have control of the application thread and can only accept invocations from the parser. In contrast, with pull parsing you own the application thread and you control when and where you call the XML parser.

This control over "when and where" leads to increased freedoms in application design, allowing you to either collect all your parsing code together or alternatively place your parsing code within the objects that understand that particular type of information.

Pull parsing has the following advantages over push parsing:

  • Parsing simple documents can now be done with simple code.
  • It's much simpler to write recursive descent parsing code for more complex documents.
  • More than one document can be read by an application at one time with just a single thread. This can be useful when part way through reading one document you need to read a second document.
  • The parser can be told to skip parts of the XML document that are not relevant to the application, which simplifies your code and may reduce processing time and memory churn.
  • You can create streaming pipelines in an object-oriented way that are efficient and simple to use.
XML Information Model
The StAX specification models an XML document as a set of events, and these events are pulled by the application and supplied in the order in which they are encountered in the XML document. The StAX specification defines the following types of events: Attribute, Characters, Comment, StartDocument, EndDocument, StartElement, EndElement, Namespace, DTD, EntityDeclaration, EntityReference, NotationDeclaration, and ProcessingInstruction.

The last five event types are only seen if your document contains a DTD. Each event has different properties associated with it depending on the type of event.

A StAX parser is an engine that reads a Unicode character stream and converts the textual data into events. Below is an example XML document:


<?xml version="1.0" encoding="UTF-8"?>
<pre1:foo xmlns:pre1="http://www.example.com/foons">
	<pre1:sometext>
			the text <![CDATA[<notallowed> as normal text]]> other text
	</pre1:sometext>
	<pre2:bar ratio="5.5" xmlns:pre2="http://www.example.com/barns"/>
</pre1:foo>

The above document would be parsed into the events shown in Figure 1.

As you can see, this small document would be converted (by default) into a stream of 14 primary events. Each colored circle in the figure is an event object. The large circles are the primary events that are seen by the application, while the small circles are secondary events that are generally accessed from some primary event.

Salient points about the event stream to note are:

  • Every StartElement event has a matching EndElement event, even for empty events like <eg/>.
  • Attributes, although events, are not (normally) seen in the event stream but are instead accessible from their StartElement event.
  • Namespaces events are not (normally) seen in the event stream but instead appear twice, first accessible from a StartElement and, second, accessible from the corresponding EndElement.
  • XML Character data may be split over more than one event and crop up where you might not expect.
While parsing an XML document the StAX parsing engine maintains a namespace stack. The namespace stack holds details of all the XML namespaces defined for the current element and its ancestors. This namespace stack is accessible though the interface javax.xml. namespace.NamespaceContext, which includes methods for looking up a namespace URI given a prefix and looking up a prefix given a namespace URI.

Cursor vs Iterator
The Story of Two APIs

When programming in Java, object creation has traditionally been seen as the enemy of performance. One of the SAX API's main advantages is that very few superfluous objects are created during the parsing of an XML document. SAX even gives the application direct access into the parser's internal character buffer in order to read text content! This lean and mean approach leads to very efficient parsing of XML. One of the design goals for StAX was for it to be at least as fast as SAX.

Very early on during the process of creating the StAX specification two alternative API styles were proposed by the expert group. One, which I'll call "cursor," followed SAX's lean and mean approach; the other, which I'll call "iterator," was a modern object-oriented API utilizing immutable objects. The expert group looked long and hard at which API style we should go with, including doing a performance analysis of the two styles. What we discovered was that we were trying to support three different end-user developers:

  1. Library and infrastructure developers: The group who creates app servers, JAXM, JAXB, JAXRpc, implementations, etc., and needs a very low-level and close-to-the-metal API with little overhead and few requirements for extensibility.
  2. J2ME developers: This group wants an XML pull parsing library that's small and simple and has a tiny footprint. They have little need for being able to extend the parser or modify the event stream.
  3. J2EE and J2SE developers: This large group generally wants a simple, efficient pull parser that naturally produces elegant bug-free code while allowing for more complex features such as stream modification and introducing new application event types.
We looked at many inventive ideas on how to create a single API that would allow us to "have our cake and eat it," but each of these ideas was rejected as they left us with a bad taste in our mouth and invariably produced a less-predictable API. In the end our desire to support these three developer types and our requirement that we be just as fast as SAX led the expert group to support both API styles.

Cursor API
The cursor API contains a central parser interface called XMLStreamReader that includes accessor methods for all the possible information you could retrieve from the XML Information model. The parser interface contains methods for accessing the document encoding, element names, attributes, namespaces, text content, processing instructions, etc. Methods are provided to allow access into the internal character buffer just as in SAX. The cursor approach is like a mirror image of SAX and provides direct access to string and character information while exposing methods with integer indexes for accessing attribute and namespace information just as in SAX. Thus it's possible to access all of the Information Model via a set of methods that return strings so object allocation is kept to a bare minimum.

Listing 1 provides some example code that uses an XMLStreamReader instance called "sr", which reads the example document listed in Figure 1. The code uses "sr" to walk over the document and retrieve the text content of the element <pre1:sometext> and the value of the ratio attribute of the element <pre2:bar>.

Listing 1 assumes the XMLStreamReader sr has just been created, i.e., StartDocument will be the first event.

Iterator API
The iterator API presents the event stream as an ordered list of immutable event objects. The StAX API defines a common base interface called XMLEvent and a subinterface for each of the event types listed in the XML information model. The Iterator API contains a central parser interface called XMLEventReader with just five methods in it, the most important being nextEvent(), which returns the next event in the stream. The interface XMLEventReader implements java.util.Iterator so it can be passed into routines that can handle the standard Java Iterator.

The common super interface XMLEvent contains methods for finding the actual event type and downcasting to the event subtypes. Listing 2 shows the equivalent code for reading our example XML document but using the XMLEventReader "er".

Clearly in a real application the three QName objects would be held in static final fields but are left inline here to aid in comparing the code examples.

What can I do with the iterator API that I can't do with the cursor API?

As the XMLEvent subclasses are immutable objects, you can place them in arrays, lists, and maps and pass them through your application as you desire, even after the parser has moved on to later events.

You can create your own subtypes of XMLEvent that are either completely new information items or extensions of existing events but with extra methods.

You can modify an event stream by adding or removing events in a way that's much simpler to code than with the cursor API.

Which API Should I Use?
This decision can only be made by the individual developer depending on the specific situation; if one API fitted all needs we would not have ended up with two.

My personal rules of thumb:

  1. If you're programming on J2ME, use the cursor API.
  2. If you're creating low-level infrastructure or libraries and you need to achieve the best possible performance, use the cursor API.
  3. If you want to create pipelines of XML processing, use the iterator API.
  4. If you want to modify the event stream, use the iterator API.
  5. If you want to future proof your app by enabling pluggable processing of the event stream, use the iterator API.
  6. If in doubt, use the iterator API.
Performance: What's the Beef?
During the expert group design discussions for StAX, the author created a prototype pull parser that provided both types of API styles, and a series of performance tests were performed using a wide range of XML test data. Due to the fact that the internal parser implementation was common for all the tests, the results showed the performance impact of using the iterator API style versus the cursor API style when accessing the parser.

The performance differences between the API styles arise mostly because of the extra objects that are created and later need to be garbage collected. The cursor and event API need to create the objects shown in Figure 2.

The cursor API does not need to create string objects for XML character data as it provides direct access to the internal character buffer. In addition, the iterator API needs to create the immutable event objects. The items colored yellow are string objects that may be cached to improve performance at the expense of some cache management complexity.

Figure 3 shows the number of bytes of XML processed per millisecond averaged over different sets of XML test files. The test was run on JDK 122 and JDK 142 for both API styles and with and without string caching enabled. The test files are loaded into memory so there is no I/O during the test runs.

Clearly there has been a massive (3-6 times) performance improvement across the board from JDK 122 to JDK 142. The iterator API without any string caching is 6.5 times faster on JDK 142.

String caching makes a big difference on JDK 122, running up to 50% faster, but only a small difference on JDK 142, showing less than a 5% improvement with perfect caching. Clearly we can now take Joshua Bloch at his word when he says that object pooling of lightweight objects is unnecessary with modern JVMs.

The overhead from using the iterator API style instead of the cursor API is around 25-30%. This sounds like a lot but remember this test program is doing 90% XML parsing and 10% application logic, whereas your typical application would probably be the other way round - 90% app logic and 10% parsing - which would drive the overhead down to about 3%, which is in the noise for most applications.

Of course your mileage may vary depending on your particular usage scenario. With the first generation StAX parser coming out soon, we'll see if this level of performance difference is also reflected in the real StAX parsers.

StAX Input Factories
How do I create an instance of XMLStreamReader or XMLEventReader?

StAX parsers that implement either of these two APIs are created by the javax.xml.stream.XMLInputFactory, which follows the standard factory pattern. When we get JAXP support you'll be able to create instances via the JAXP APIs. Create a new instance of XMLInputFactory by calling newInstance(); this method will search for a StAX implementation using the standard techniques.

The input factory has a set of configuration parameters that control the features of the parser that will be created by the factory. Once you have an instance of the factory you can override the default configuration parameter values.

Some of the more interesting configuration parameters are:

  • javax.xml.stream.isCoalescing: Defaults to false but when set to true will request a parser that coalesces all contagious text into a single character event.
  • javax.xml.stream.supportDTD: Defaults to true, but when set to false will request a parser that does not support DTDs in XML documents.
  • javax.xml.stream.resolver: Can be used to set an implementation of XMLResolver, which is used during parsing to resolve external entities.
Below is the code to create an instance of the XMLStreamReader on a File f.


        XMLInputFactory factory = XMLInputFactory.newInstance();
        XMLStreamReader sr = factory.createXMLStreamReader(new FileInputStream(f));
And to create an XMLEventReader
        XMLInputFactory factory = XMLInputFactory.newInstance();
        XMLEventReader sr = factory.createXMLEventReader(new FileInputStream(f));

If we wanted a differently featured parser, we would set some configuration parameters before creating the parser as follows:


        XMLInputFactory factory = XMLInputFactory.newInstance();
        factory.setProperty("javax.xml.stream.isCoalescing",Boolean.TRUE);
      factory.setProperty("javax.xml.stream.supportDTD",Boolean.FALSE);
        XMLEventReader sr = factory.createXMLEventReader(new FileInputStream(f));

Some of the standard configuration parameters are optional, meaning that some implementations may choose not to support the feature. You can check to see if a standard (or nonstandard) configuration parameter is supported by calling isPropertySupported() on the factory instance. Here's an example of using an optional feature:


        XMLInputFactory factory = XMLInputFactory.newInstance();
        if(factory.isPropertySupported("javax.xml.stream.isValidating")){
            factory.setProperty("javax.xml.stream.isValidating",Boolean.TRUE);
            factory.setProperty("javax.xml.stream.reporter",this);
        }
        XMLStreamReader sr = factory.createXMLStreamReader(new FileInputStream(f));

The above code instantiates a DTD validating parser if the implementation supports DTD validation.

Once you have created either an XMLStreamReader or an XMLEventReader parser you can find out what its configuration is by calling getProperty() on the parser.

One important design feature of StAX is that you must specify the properties of the parser before you create the parser and you cannot change the property value for an existing parser nor set a new data source into the parser. The rationale behind these restrictions is that we wanted to enable optimized and modular implementations.

A StAX implementation could use a special parsing engine with its own optimized byte to Unicode decoding when reading from a java.io.InputStream; alternatively it could use a different parsing engine when a java.io.Reader is the data source. Another example is the javax.xml.stream.supportDTD property that when "false" could trigger an implementation to use a simpler, faster parsing engine. If we allowed any of the configuration parameters to be modifiable after the parser was created, these types of optimization would be considerably harder to implement.

What About Writing XML?
StAX is a truly bidirectional API and can be effectively used to generate XML, either from scratch or as the result of a StAX Event pipeline. The StAX writers are intelligent in that they maintain namespace stacks and can automatically generate namespace prefixes (if you don't care what they look like). The writers can also close elements using the correct prefix and localname.

Listings 3 and 4 show some code to generate our example XML file using someText and ratio variables. If you want to use the cursor API, the code appears as in Listing 3. If you want to use the iterator API, the code should look like Listing 4.

The writers automatically escape any illegal Unicode characters such as < or & that are found in character content or attribute values.

Summary
After a lot of hard work the StAX API specification has finally seen the light of day and Java application programmers now have a standard pull parser interface for XML. The StAX API has many advantages over the SAX API for developers, including a simpler programming model and the ability to modify the event stream data and extend the information model to allow the introduction of application-specific additions. J2ME programmers now have an XML API that matches their resource-constrained environments, while library developers now have a standard API to use that fits in with their client applications' threading models and performance expectations.

Acknowledgment
I would like to thank the members of the JSR 173 expert group for an interesting and stimulating set of discussions over the past two years.

More Stories By David Stephenson

David has worked in the computing industry for over ten years working in areas of distributed systems, middleware and IT solutions. David has a wide range of experience in computing having worked for Hewlett Packard laboratories and for the HPs middleware divisions creating e-services technology. Lately David has worked in the area of web services and on both the Java and .net platforms and has been HPís contributing expert in the JCP for both JSR31 and JSR173.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
SYS-CON Events announced today that Commvault, a global leader in enterprise data protection and information management, has been named “Bronze Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Commvault is a leading provider of data protection and information management...
The cloud promises new levels of agility and cost-savings for Big Data, data warehousing and analytics. But it’s challenging to understand all the options – from IaaS and PaaS to newer services like HaaS (Hadoop as a Service) and BDaaS (Big Data as a Service). In her session at @BigDataExpo at @ThingsExpo, Hannah Smalltree, a director at Cazena, will provide an educational overview of emerging “as-a-service” options for Big Data in the cloud. This is critical background for IT and data profes...
SYS-CON Events announced today that VAI, a leading ERP software provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. VAI (Vormittag Associates, Inc.) is a leading independent mid-market ERP software developer renowned for its flexible solutions and ability to automate critical business functions for the distribution, manufacturing, specialty retail and service sectors. An IBM Premier Business Part...
SYS-CON Events announced today that Alert Logic, Inc., the leading provider of Security-as-a-Service solutions for the cloud, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Alert Logic, Inc., provides Security-as-a-Service for on-premises, cloud, and hybrid infrastructures, delivering deep security insight and continuous protection for customers at a lower cost than traditional security solutions. Ful...
Fortunately, meaningful and tangible business cases for IoT are plentiful in a broad array of industries and vertical markets. These range from simple warranty cost reduction for capital intensive assets, to minimizing downtime for vital business tools, to creating feedback loops improving product design, to improving and enhancing enterprise customer experiences. All of these business cases, which will be briefly explored in this session, hinge on cost effectively extracting relevant data from ...
With the Apple Watch making its way onto wrists all over the world, it’s only a matter of time before it becomes a staple in the workplace. In fact, Forrester reported that 68 percent of technology and business decision-makers characterize wearables as a top priority for 2015. Recognizing their business value early on, FinancialForce.com was the first to bring ERP to wearables, helping streamline communication across front and back office functions. In his session at @ThingsExpo, Kevin Roberts...
SYS-CON Events announced today that Interoute, owner-operator of one of Europe's largest networks and a global cloud services platform, has been named “Bronze Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2015 at the Javits Center in New York, New York. Interoute is the owner-operator of one of Europe's largest networks and a global cloud services platform which encompasses 12 data centers, 14 virtual data centers and 31 colocation centers, with connections to 195 ad...
With an estimated 50 billion devices connected to the Internet by 2020, several industries will begin to expand their capabilities for retaining end point data at the edge to better utilize the range of data types and sheer volume of M2M data generated by the Internet of Things. In his session at @ThingsExpo, Don DeLoach, CEO and President of Infobright, will discuss the infrastructures businesses will need to implement to handle this explosion of data by providing specific use cases for filte...
As enterprises work to take advantage of Big Data technologies, they frequently become distracted by product-level decisions. In most new Big Data builds this approach is completely counter-productive: it presupposes tools that may not be a fit for development teams, forces IT to take on the burden of evaluating and maintaining unfamiliar technology, and represents a major up-front expense. In his session at @BigDataExpo at @ThingsExpo, Andrew Warfield, CTO and Co-Founder of Coho Data, will dis...
SYS-CON Events announced today that Fusion, a leading provider of cloud services, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Fusion, a leading provider of integrated cloud solutions to small, medium and large businesses, is the industry's single source for the cloud. Fusion's advanced, proprietary cloud service platform enables the integration of leading edge solutions in the cloud, including clou...
Most people haven’t heard the word, “gamification,” even though they probably, and perhaps unwittingly, participate in it every day. Gamification is “the process of adding games or game-like elements to something (as a task) so as to encourage participation.” Further, gamification is about bringing game mechanics – rules, constructs, processes, and methods – into the real world in an effort to engage people. In his session at @ThingsExpo, Robert Endo, owner and engagement manager of Intrepid D...
Eighty percent of a data scientist’s time is spent gathering and cleaning up data, and 80% of all data is unstructured and almost never analyzed. Cognitive computing, in combination with Big Data, is changing the equation by creating data reservoirs and using natural language processing to enable analysis of unstructured data sources. This is impacting every aspect of the analytics profession from how data is mined (and by whom) to how it is delivered. This is not some futuristic vision: it's ha...
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
Learn how IoT, cloud, social networks and last but not least, humans, can be integrated into a seamless integration of cooperative organisms both cybernetic and biological. This has been enabled by recent advances in IoT device capabilities, messaging frameworks, presence and collaboration services, where devices can share information and make independent and human assisted decisions based upon social status from other entities. In his session at @ThingsExpo, Michael Heydt, founder of Seamless...
The IoT's basic concept of collecting data from as many sources possible to drive better decision making, create process innovation and realize additional revenue has been in use at large enterprises with deep pockets for decades. So what has changed? In his session at @ThingsExpo, Prasanna Sivaramakrishnan, Solutions Architect at Red Hat, discussed the impact commodity hardware, ubiquitous connectivity, and innovations in open source software are having on the connected universe of people, thi...
WebRTC: together these advances have created a perfect storm of technologies that are disrupting and transforming classic communications models and ecosystems. In his session at WebRTC Summit, Cary Bran, VP of Innovation and New Ventures at Plantronics and PLT Labs, provided an overview of this technological shift, including associated business and consumer communications impacts, and opportunities it may enable, complement or entirely transform.
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, showed how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants received the download information, scripts, and complete end-t...
For manufacturers, the Internet of Things (IoT) represents a jumping-off point for innovation, jobs, and revenue creation. But to adequately seize the opportunity, manufacturers must design devices that are interconnected, can continually sense their environment and process huge amounts of data. As a first step, manufacturers must embrace a new product development ecosystem in order to support these products.
Manufacturing connected IoT versions of traditional products requires more than multiple deep technology skills. It also requires a shift in mindset, to realize that connected, sensor-enabled “things” act more like services than what we usually think of as products. In his session at @ThingsExpo, David Friedman, CEO and co-founder of Ayla Networks, discussed how when sensors start generating detailed real-world data about products and how they’re being used, smart manufacturers can use the dat...
When it comes to IoT in the enterprise, namely the commercial building and hospitality markets, a benefit not getting the attention it deserves is energy efficiency, and IoT’s direct impact on a cleaner, greener environment when installed in smart buildings. Until now clean technology was offered piecemeal and led with point solutions that require significant systems integration to orchestrate and deploy. There didn't exist a 'top down' approach that can manage and monitor the way a Smart Buildi...