Welcome!

Java IoT Authors: Liz McMillan, Elizabeth White, Yeshim Deniz, Zakia Bouachraoui, Pat Romanski

Related Topics: Java IoT, IBM Cloud, Weblogic

Java IoT: Article

Java vs C++ "Shootout" Revisited

Java vs C++ "Shootout" Revisited

Keith Lea writes of the benchmark, on his results page, "I was sick of hearing people say Java was slow, when I know it's pretty fast, so I took the benchmark code for C++ and Java from the now outdated Great Computer Language Shootout and ran the tests myself."

Lea used G++ (GCC) 3.3.1 20030930 (with glibc 2.3.2-98) for the C++, with the -O2 flag (for both i386 and i686). He compiled the Java code normally with the Sun Java 1.4.2_01 compiler, and ran it with the Sun 1.4.2_01 JVM. He ran the tests on Red Hat Linux 9 / Fedora Test1 with the 2.4.20-20.9 kernel on a T30 laptop. The laptop "has a Pentium 4 mobile chip, 512MB of memory, a sort of slow disk," he notes.

The results he got were that Java is significantly faster than optimized C++ in many cases.

"They also show that no one should ever run the client JVM when given the choice," Lea adds. ("Everyone has the choice," he says. To run the server VM, see instructions in the Using the Server JVM section below.)

JDJ has agreed to post online anyone else's results as long as they use Java 1.4.2 or higher and any version of GCC that produces faster or equivalent code than the 3.3.1 I used. We encourage you to download the source and/or the binaries and perform the tests yourself, with your favorite compiler and on your favorite platform.


Lea's Data and Results

JVM startup time was included in these results. "That means even with JVM startup time, Java is still faster than C++ in many of these tests," says Lea.

Some of the C++ tests would not compile. "I've never been very good at decoding GCC's error messages," he admits, "so if I couldn't fix a test with a trivial modification, I didn't include it in my benchmarks."

Lea also modified one of the tests, the string concatenation test for Java.

"The test was creating a new StringBuffer in each iteration of the loop, which was just silly," he explains. "I updated the code to use a single StringBuffer and appending to it inside the loop."

(The updated tests at the original shootout use this new method.)

"Java lost this benchmark even with the modifications," Lea declares. "So if anyone wants to accuse me of biasing the results, they're going to have to try harder."

Several versions of some of the C++ tests (like matrix) were present in the original shootout source, he continues. 

"I used the versions without numbers in them, like matrix.g++ instead of matrix.g++2. I don't know which of these were used in the original benchmarks, but from my quick experimenting, the numberless ones generally ran faster than their numbered counterparts."

"Looking at them again," Lea says, "matrix.g++3 runs faster than the matrix.g++ that I use. However, it still runs slower than the Java version, so I don't plan to modify the graph/data unless someone asks me to, since getting that graph in the first place was sort of a pain.)"

He continues: "I've been told that the C++ code for the Method Call benchmark returns by value while the Java code returns by reference, and that modifying the C++ code to pass a pointer makes that benchmark faster. However, even with the modification, the C++ version still runs slower than the Java version."

Lea ran th Java and the C++ tests to "warm up" (both the Java and C++ tests got faster after he ran them a few times).

"I've been told that these tests are invalid because they were run with GCC," he concedes, adding: "I have seen both benchmarks that show GCC producing faster code than Visual Studio's VC++ compiler, and benchmarks showing the opposite. If I update the benchmarks with another compiler added, it will be the Intel C++ Compiler, which I'm pretty sure produces faster code than VC++."

Lea says he's been accused of biasing the results by using the -O2 option for GCC, "supposedly because -O2 optimizes for space, thus slowing down the benchmark," he explains.

But this is not what -O2 does, he points out, referring to the GCC -O documentation:

JVM startup time was included in these results. "That means even with JVM startup time, Java is still faster than C++ in many of these tests," says Lea.

Some of the C++ tests would not compile. "I've never been very good at decoding GCC's error messages," he admits, "so if I couldn't fix a test with a trivial modification, I didn't include it in my benchmarks."

Lea also modified one of the tests, the string concatenation test for Java.

"The test was creating a new StringBuffer in each iteration of the loop, which was just silly," he explains. "I updated the code to use a single StringBuffer and appending to it inside the loop."

(The updated tests at the original shootout use this new method.)

"Java lost this benchmark even with the modifications," Lea declares. "So if anyone wants to accuse me of biasing the results, they're going to have to try harder."

Several versions of some of the C++ tests (like matrix) were present in the original shootout source, he continues. 

"I used the versions without numbers in them, like matrix.g++ instead of matrix.g++2. I don't know which of these were used in the original benchmarks, but from my quick experimenting, the numberless ones generally ran faster than their numbered counterparts."

"Looking at them again," Lea says, "matrix.g++3 runs faster than the matrix.g++ that I use. However, it still runs slower than the Java version, so I don't plan to modify the graph/data unless someone asks me to, since getting that graph in the first place was sort of a pain.)"

He continues: "I've been told that the C++ code for the Method Call benchmark returns by value while the Java code returns by reference, and that modifying the C++ code to pass a pointer makes that benchmark faster. However, even with the modification, the C++ version still runs slower than the Java version."

Lea ran the tests many times before running the "official" recorded set of tests, so there was plenty of time for both Java and the C++ tests to "warm up" (both the Java and C++ tests got faster after he ran them a few times).

"I've been told that these tests are invalid because they were run with GCC," he concedes, adding: "I have seen both benchmarks that show GCC producing faster code than Visual Studio's VC++ compiler, and benchmarks showing the opposite. If I update the benchmarks with another compiler added, it will be the Intel C++ Compiler, which I'm pretty sure produces faster code than VC++."

Lea says he's been accused of biasing the results by using the -O2 option for GCC, "supposedly because -O2 optimizes for space, thus slowing down the benchmark," he explains.

But this is not what -O2 does, he points out, referring to the GCC -O documentation:

-O2: Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-speed tradeoff. The compiler does not perform loop unrolling or function inlining when you specify -O2. As compared to -O, this option increases both compilation time and the performance of the generated code.

"On the other hand, -O3 performs space-speed tradeoffs, and -O performs fewer optimizations. Thus, for these tests, I think O2 was the best choice," Lea concludes.

 

"I don't have an automated means of building and benchmarking these things (and the scripts that came with the original shootout didn't run for me)," he continues. "I really do want people to test it on their own machines, but it's going to take some work, I guess."

Lea compiled the C++ code with:

g++ [test].cpp -O2 -march=i386 -o [test]-386

g++ [test].cpp -O2 -march=i686 -o [test]-686

and the Java code with:

javac [test].java

To see how he ran the binaries, see the run log. You can download the source code he used in either .bz2 or .zip format.

Using the Server JVM

Every form of Sun's Java runtime comes with both the "client VM" and the "server VM."

"Unfortunately, Java applications and applets run by default in the client VM," Lea observes. "The Server VM is much faster than the Client VM, but it has the downside of taking around 10% longer to start up, and it uses more memory."

Lea explains the two ways to run Java applications with the server VM as follows

  1. When launching a Java application from the command line, use java -server [arguments...] instead of java [arguments...]. For example, use java -server -jar beanshell.jar.
  2. Modify the jvm.cfg file in your Java installation. (It's a text file, so you can use Notepad or Emacs to edit it.) This is located in C:\Program Files\Java\j2reXXX\lib\i386\ on Windows, /usr/java/j2reXXX/lib/i386/ on Linux. You will see two lines:
    -client KNOWN
    -server KNOWN
    You should change them to:
    -server KNOWN
    -client KNOWN
    This change will cause the server VM to be run for all applications, unless they are run with the -client argument.

He can be contacted at

Every form of Sun's Java runtime comes with both the "client VM" and the "server VM."

"Unfortunately, Java applications and applets run by default in the client VM," Lea observes. "The Server VM is much faster than the Client VM, but it has the downside of taking around 10% longer to start up, and it uses more memory."

Lea explains the two ways to run Java applications with the server VM as follows

  1. When launching a Java application from the command line, use java -server [arguments...] instead of java [arguments...]. For example, use java -server -jar beanshell.jar.
  2. Modify the jvm.cfg file in your Java installation. (It's a text file, so you can use Notepad or Emacs to edit it.) This is located in C:\Program Files\Java\j2reXXX\lib\i386\ on Windows, /usr/java/j2reXXX/lib/i386/ on Linux. You will see two lines:
    -client KNOWN
    -server KNOWN
    You should change them to:
    -server KNOWN
    -client KNOWN
    This change will cause the server VM to be run for all applications, unless they are run with the -client argument.

He can be contacted at [email protected].

Links

More Stories By Jeremy Geelan

Jeremy Geelan is Chairman & CEO of the 21st Century Internet Group, Inc. and an Executive Academy Member of the International Academy of Digital Arts & Sciences. Formerly he was President & COO at Cloud Expo, Inc. and Conference Chair of the worldwide Cloud Expo series. He appears regularly at conferences and trade shows, speaking to technology audiences across six continents. You can follow him on twitter: @jg21.

Comments (152)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


IoT & Smart Cities Stories
@CloudEXPO and @ExpoDX, two of the most influential technology events in the world, have hosted hundreds of sponsors and exhibitors since our launch 10 years ago. @CloudEXPO and @ExpoDX New York and Silicon Valley provide a full year of face-to-face marketing opportunities for your company. Each sponsorship and exhibit package comes with pre and post-show marketing programs. By sponsoring and exhibiting in New York and Silicon Valley, you reach a full complement of decision makers and buyers in ...
Two weeks ago (November 3-5), I attended the Cloud Expo Silicon Valley as a speaker, where I presented on the security and privacy due diligence requirements for cloud solutions. Cloud security is a topical issue for every CIO, CISO, and technology buyer. Decision-makers are always looking for insights on how to mitigate the security risks of implementing and using cloud solutions. Based on the presentation topics covered at the conference, as well as the general discussions heard between sessio...
While the focus and objectives of IoT initiatives are many and diverse, they all share a few common attributes, and one of those is the network. Commonly, that network includes the Internet, over which there isn't any real control for performance and availability. Or is there? The current state of the art for Big Data analytics, as applied to network telemetry, offers new opportunities for improving and assuring operational integrity. In his session at @ThingsExpo, Jim Frey, Vice President of S...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound e...
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, compared the Jevons Paradox to modern-day enterprise IT, examin...
Rodrigo Coutinho is part of OutSystems' founders' team and currently the Head of Product Design. He provides a cross-functional role where he supports Product Management in defining the positioning and direction of the Agile Platform, while at the same time promoting model-based development and new techniques to deliver applications in the cloud.
There are many examples of disruption in consumer space – Uber disrupting the cab industry, Airbnb disrupting the hospitality industry and so on; but have you wondered who is disrupting support and operations? AISERA helps make businesses and customers successful by offering consumer-like user experience for support and operations. We have built the world’s first AI-driven IT / HR / Cloud / Customer Support and Operations solution.
LogRocket helps product teams develop better experiences for users by recording videos of user sessions with logs and network data. It identifies UX problems and reveals the root cause of every bug. LogRocket presents impactful errors on a website, and how to reproduce it. With LogRocket, users can replay problems.
Rafay enables developers to automate the distribution, operations, cross-region scaling and lifecycle management of containerized microservices across public and private clouds, and service provider networks. Rafay's platform is built around foundational elements that together deliver an optimal abstraction layer across disparate infrastructure, making it easy for developers to scale and operate applications across any number of locations or regions. Consumed as a service, Rafay's platform elimi...