Welcome!

Java Authors: Carmen Gonzalez, Lori MacVittie, Trevor Parsons, Peter Silva, Elizabeth White

Related Topics: Java, Websphere, Weblogic

Java: Article

Java vs C++ "Shootout" Revisited

Java vs C++ "Shootout" Revisited

Keith Lea writes of the benchmark, on his results page, "I was sick of hearing people say Java was slow, when I know it's pretty fast, so I took the benchmark code for C++ and Java from the now outdated Great Computer Language Shootout and ran the tests myself."

Lea used G++ (GCC) 3.3.1 20030930 (with glibc 2.3.2-98) for the C++, with the -O2 flag (for both i386 and i686). He compiled the Java code normally with the Sun Java 1.4.2_01 compiler, and ran it with the Sun 1.4.2_01 JVM. He ran the tests on Red Hat Linux 9 / Fedora Test1 with the 2.4.20-20.9 kernel on a T30 laptop. The laptop "has a Pentium 4 mobile chip, 512MB of memory, a sort of slow disk," he notes.

The results he got were that Java is significantly faster than optimized C++ in many cases.

"They also show that no one should ever run the client JVM when given the choice," Lea adds. ("Everyone has the choice," he says. To run the server VM, see instructions in the Using the Server JVM section below.)

JDJ has agreed to post online anyone else's results as long as they use Java 1.4.2 or higher and any version of GCC that produces faster or equivalent code than the 3.3.1 I used. We encourage you to download the source and/or the binaries and perform the tests yourself, with your favorite compiler and on your favorite platform.


Lea's Data and Results

JVM startup time was included in these results. "That means even with JVM startup time, Java is still faster than C++ in many of these tests," says Lea.

Some of the C++ tests would not compile. "I've never been very good at decoding GCC's error messages," he admits, "so if I couldn't fix a test with a trivial modification, I didn't include it in my benchmarks."

Lea also modified one of the tests, the string concatenation test for Java.

"The test was creating a new StringBuffer in each iteration of the loop, which was just silly," he explains. "I updated the code to use a single StringBuffer and appending to it inside the loop."

(The updated tests at the original shootout use this new method.)

"Java lost this benchmark even with the modifications," Lea declares. "So if anyone wants to accuse me of biasing the results, they're going to have to try harder."

Several versions of some of the C++ tests (like matrix) were present in the original shootout source, he continues. 

"I used the versions without numbers in them, like matrix.g++ instead of matrix.g++2. I don't know which of these were used in the original benchmarks, but from my quick experimenting, the numberless ones generally ran faster than their numbered counterparts."

"Looking at them again," Lea says, "matrix.g++3 runs faster than the matrix.g++ that I use. However, it still runs slower than the Java version, so I don't plan to modify the graph/data unless someone asks me to, since getting that graph in the first place was sort of a pain.)"

He continues: "I've been told that the C++ code for the Method Call benchmark returns by value while the Java code returns by reference, and that modifying the C++ code to pass a pointer makes that benchmark faster. However, even with the modification, the C++ version still runs slower than the Java version."

Lea ran th Java and the C++ tests to "warm up" (both the Java and C++ tests got faster after he ran them a few times).

"I've been told that these tests are invalid because they were run with GCC," he concedes, adding: "I have seen both benchmarks that show GCC producing faster code than Visual Studio's VC++ compiler, and benchmarks showing the opposite. If I update the benchmarks with another compiler added, it will be the Intel C++ Compiler, which I'm pretty sure produces faster code than VC++."

Lea says he's been accused of biasing the results by using the -O2 option for GCC, "supposedly because -O2 optimizes for space, thus slowing down the benchmark," he explains.

But this is not what -O2 does, he points out, referring to the GCC -O documentation:

JVM startup time was included in these results. "That means even with JVM startup time, Java is still faster than C++ in many of these tests," says Lea.

Some of the C++ tests would not compile. "I've never been very good at decoding GCC's error messages," he admits, "so if I couldn't fix a test with a trivial modification, I didn't include it in my benchmarks."

Lea also modified one of the tests, the string concatenation test for Java.

"The test was creating a new StringBuffer in each iteration of the loop, which was just silly," he explains. "I updated the code to use a single StringBuffer and appending to it inside the loop."

(The updated tests at the original shootout use this new method.)

"Java lost this benchmark even with the modifications," Lea declares. "So if anyone wants to accuse me of biasing the results, they're going to have to try harder."

Several versions of some of the C++ tests (like matrix) were present in the original shootout source, he continues. 

"I used the versions without numbers in them, like matrix.g++ instead of matrix.g++2. I don't know which of these were used in the original benchmarks, but from my quick experimenting, the numberless ones generally ran faster than their numbered counterparts."

"Looking at them again," Lea says, "matrix.g++3 runs faster than the matrix.g++ that I use. However, it still runs slower than the Java version, so I don't plan to modify the graph/data unless someone asks me to, since getting that graph in the first place was sort of a pain.)"

He continues: "I've been told that the C++ code for the Method Call benchmark returns by value while the Java code returns by reference, and that modifying the C++ code to pass a pointer makes that benchmark faster. However, even with the modification, the C++ version still runs slower than the Java version."

Lea ran the tests many times before running the "official" recorded set of tests, so there was plenty of time for both Java and the C++ tests to "warm up" (both the Java and C++ tests got faster after he ran them a few times).

"I've been told that these tests are invalid because they were run with GCC," he concedes, adding: "I have seen both benchmarks that show GCC producing faster code than Visual Studio's VC++ compiler, and benchmarks showing the opposite. If I update the benchmarks with another compiler added, it will be the Intel C++ Compiler, which I'm pretty sure produces faster code than VC++."

Lea says he's been accused of biasing the results by using the -O2 option for GCC, "supposedly because -O2 optimizes for space, thus slowing down the benchmark," he explains.

But this is not what -O2 does, he points out, referring to the GCC -O documentation:

-O2: Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-speed tradeoff. The compiler does not perform loop unrolling or function inlining when you specify -O2. As compared to -O, this option increases both compilation time and the performance of the generated code.

"On the other hand, -O3 performs space-speed tradeoffs, and -O performs fewer optimizations. Thus, for these tests, I think O2 was the best choice," Lea concludes.

 

"I don't have an automated means of building and benchmarking these things (and the scripts that came with the original shootout didn't run for me)," he continues. "I really do want people to test it on their own machines, but it's going to take some work, I guess."

Lea compiled the C++ code with:

g++ [test].cpp -O2 -march=i386 -o [test]-386

g++ [test].cpp -O2 -march=i686 -o [test]-686

and the Java code with:

javac [test].java

To see how he ran the binaries, see the run log. You can download the source code he used in either .bz2 or .zip format.

Using the Server JVM

Every form of Sun's Java runtime comes with both the "client VM" and the "server VM."

"Unfortunately, Java applications and applets run by default in the client VM," Lea observes. "The Server VM is much faster than the Client VM, but it has the downside of taking around 10% longer to start up, and it uses more memory."

Lea explains the two ways to run Java applications with the server VM as follows

  1. When launching a Java application from the command line, use java -server [arguments...] instead of java [arguments...]. For example, use java -server -jar beanshell.jar.
  2. Modify the jvm.cfg file in your Java installation. (It's a text file, so you can use Notepad or Emacs to edit it.) This is located in C:\Program Files\Java\j2reXXX\lib\i386\ on Windows, /usr/java/j2reXXX/lib/i386/ on Linux. You will see two lines:
    -client KNOWN
    -server KNOWN
    You should change them to:
    -server KNOWN
    -client KNOWN
    This change will cause the server VM to be run for all applications, unless they are run with the -client argument.

He can be contacted at

Every form of Sun's Java runtime comes with both the "client VM" and the "server VM."

"Unfortunately, Java applications and applets run by default in the client VM," Lea observes. "The Server VM is much faster than the Client VM, but it has the downside of taking around 10% longer to start up, and it uses more memory."

Lea explains the two ways to run Java applications with the server VM as follows

  1. When launching a Java application from the command line, use java -server [arguments...] instead of java [arguments...]. For example, use java -server -jar beanshell.jar.
  2. Modify the jvm.cfg file in your Java installation. (It's a text file, so you can use Notepad or Emacs to edit it.) This is located in C:\Program Files\Java\j2reXXX\lib\i386\ on Windows, /usr/java/j2reXXX/lib/i386/ on Linux. You will see two lines:
    -client KNOWN
    -server KNOWN
    You should change them to:
    -server KNOWN
    -client KNOWN
    This change will cause the server VM to be run for all applications, unless they are run with the -client argument.

He can be contacted at [email protected].

Links

More Stories By Jeremy Geelan

Jeremy Geelan is Chairman & CEO of the 21st Century Internet Group, Inc. and an Executive Academy Member of the International Academy of Digital Arts & Sciences. Formerly he was President & COO at Cloud Expo, Inc. and Conference Chair of the worldwide Cloud Expo series. He appears regularly at conferences and trade shows, speaking to technology audiences across six continents. You can follow him on twitter: @jg21.

Comments (152) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
B Bennett 06/15/04 06:25:37 PM EDT

Mr Salarian and people with similar questions should consult the methodology notes from the original shootout (whose code was borrowed for this test) at

http://www.bagley.org/~doug/shootout/method.shtml

That should help clarify what exactly is getting tested, and by what methods.

A. Salarian 06/15/04 06:01:52 PM EDT

Sir, with all due respect I have to say your benchmark is worthless. You have note compared a single C++ program to a Java program. The codes you have tested do not show anything. Why not some real world situation on WHY people use C++ but not Java? Like some complex matrix operations using template based libraries like Blitz++ and equivalent Java industry level Matrix libs? Some applications with a large number of dynamic allocations and deallocations like a dynamic patricia tri in a LZW implementaion? Why not largescale FFTs to test the efficiency of cache management? Why you didn''t use the instrumented C++ (i.e. using the profiling guided compilations)?
You can get any result you wish as long as you don''t test any real world code...

@ThingsExpo Stories
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
Noted IoT expert and researcher Joseph di Paolantonio (pictured below) has joined the @ThingsExpo faculty. Joseph, who describes himself as an “Independent Thinker” from DataArchon, will speak on the topic of “Smart Grids & Managing Big Utilities.” Over his career, Joseph di Paolantonio has worked in the energy, renewables, aerospace, telecommunications, and information technology industries. His expertise is in data analysis, system engineering, Bayesian statistics, data warehouses, business intelligence, data mining, predictive methods, and very large databases (VLDB). Prior to DataArchon, he served as a VP and Principal Analyst with Constellation Group. He is a member of the Boulder (Colo.) Brain Trust, an organization with a mission “to benefit the Business Intelligence and data management industry by providing pro bono exchange of information between vendors and independent analysts on new trends and technologies and to provide vendors with constructive feedback on their of...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
There will be 50 billion Internet connected devices by 2020. Today, every manufacturer has a propriety protocol and an app. How do we securely integrate these "things" into our lives and businesses in a way that we can easily control and manage? Even better, how do we integrate these "things" so that they control and manage each other so our lives become more convenient or our businesses become more profitable and/or safe? We have heard that the best interface is no interface. In his session at Internet of @ThingsExpo, Chris Matthieu, Co-Founder & CTO at Octoblu, Inc., will discuss how these devices generate enough data to learn our behaviors and simplify/improve our lives. What if we could connect everything to everything? I'm not only talking about connecting things to things but also systems, cloud services, and people. Add in a little machine learning and artificial intelligence and now we have something interesting...
Last week, while in San Francisco, I used the Uber app and service four times. All four experiences were great, although one of the drivers stopped for 30 seconds and then left as I was walking up to the car. He must have realized I was a blogger. None the less, the next car was just a minute away and I suffered no pain. In this article, my colleague, Ved Sen, Global Head, Advisory Services Social, Mobile and Sensors at Cognizant shares his experiences and insights.
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) irreversibly encoded. In his session at Internet of @ThingsExpo, Peter Dunkley, Technical Director at Acision, will look at how this identity problem can be solved and discuss ways to use existing web identities for real-time communication.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT. Attendees will learn real-world benefits of WebRTC and explore future possibilities, as WebRTC and IoT intersect to improve customer service.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at Internet of @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, will share some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, an Open Source Cloud Communications company that helps the shift from legacy IN/SS7 telco networks to IP-based cloud comms. An early investor in multiple start-ups, he still finds time to code for his companies and contribute to open source projects.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Erik Lagerway, Co-founder of Hookflash, will walk through the shifting landscape of traditional telephone and voice services to the modern P2P RTC era of OTT cloud assisted services.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehension and conference efficiency.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace. These technological reforms have not only changed computers and smartphones, but are also changing the data processing model for all information devices. In particular, in the area known as M2M (Machine-To-Machine), there are great expectations that information with a new type of value can be produced using a variety of devices and sensors saving/sharing data via the network and through large-scale cloud-type data processing. This consortium believes that attaching a huge number of devic...
Innodisk is a service-driven provider of industrial embedded flash and DRAM storage products and technologies, with a focus on the enterprise, industrial, aerospace, and defense industries. Innodisk is dedicated to serving their customers and business partners. Quality is vitally important when it comes to industrial embedded flash and DRAM storage products. That’s why Innodisk manufactures all of their products in their own purpose-built memory production facility. In fact, they designed and built their production center to maximize manufacturing efficiency and guarantee the highest quality of our products.
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital business.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. Download Slide Deck: ▸ Here
BSQUARE is a global leader of embedded software solutions. We enable smart connected systems at the device level and beyond that millions use every day and provide actionable data solutions for the growing Internet of Things (IoT) market. We empower our world-class customers with our products, services and solutions to achieve innovation and success. For more information, visit www.bsquare.com.