Welcome!

Java Authors: Michelle Drolet, Liz McMillan, Andreas Grabner, Elizabeth White, Pat Romanski

Related Topics: Java, Websphere, Weblogic

Java: Article

Java vs C++ "Shootout" Revisited

Java vs C++ "Shootout" Revisited

Keith Lea writes of the benchmark, on his results page, "I was sick of hearing people say Java was slow, when I know it's pretty fast, so I took the benchmark code for C++ and Java from the now outdated Great Computer Language Shootout and ran the tests myself."

Lea used G++ (GCC) 3.3.1 20030930 (with glibc 2.3.2-98) for the C++, with the -O2 flag (for both i386 and i686). He compiled the Java code normally with the Sun Java 1.4.2_01 compiler, and ran it with the Sun 1.4.2_01 JVM. He ran the tests on Red Hat Linux 9 / Fedora Test1 with the 2.4.20-20.9 kernel on a T30 laptop. The laptop "has a Pentium 4 mobile chip, 512MB of memory, a sort of slow disk," he notes.

The results he got were that Java is significantly faster than optimized C++ in many cases.

"They also show that no one should ever run the client JVM when given the choice," Lea adds. ("Everyone has the choice," he says. To run the server VM, see instructions in the Using the Server JVM section below.)

JDJ has agreed to post online anyone else's results as long as they use Java 1.4.2 or higher and any version of GCC that produces faster or equivalent code than the 3.3.1 I used. We encourage you to download the source and/or the binaries and perform the tests yourself, with your favorite compiler and on your favorite platform.


Lea's Data and Results

JVM startup time was included in these results. "That means even with JVM startup time, Java is still faster than C++ in many of these tests," says Lea.

Some of the C++ tests would not compile. "I've never been very good at decoding GCC's error messages," he admits, "so if I couldn't fix a test with a trivial modification, I didn't include it in my benchmarks."

Lea also modified one of the tests, the string concatenation test for Java.

"The test was creating a new StringBuffer in each iteration of the loop, which was just silly," he explains. "I updated the code to use a single StringBuffer and appending to it inside the loop."

(The updated tests at the original shootout use this new method.)

"Java lost this benchmark even with the modifications," Lea declares. "So if anyone wants to accuse me of biasing the results, they're going to have to try harder."

Several versions of some of the C++ tests (like matrix) were present in the original shootout source, he continues. 

"I used the versions without numbers in them, like matrix.g++ instead of matrix.g++2. I don't know which of these were used in the original benchmarks, but from my quick experimenting, the numberless ones generally ran faster than their numbered counterparts."

"Looking at them again," Lea says, "matrix.g++3 runs faster than the matrix.g++ that I use. However, it still runs slower than the Java version, so I don't plan to modify the graph/data unless someone asks me to, since getting that graph in the first place was sort of a pain.)"

He continues: "I've been told that the C++ code for the Method Call benchmark returns by value while the Java code returns by reference, and that modifying the C++ code to pass a pointer makes that benchmark faster. However, even with the modification, the C++ version still runs slower than the Java version."

Lea ran th Java and the C++ tests to "warm up" (both the Java and C++ tests got faster after he ran them a few times).

"I've been told that these tests are invalid because they were run with GCC," he concedes, adding: "I have seen both benchmarks that show GCC producing faster code than Visual Studio's VC++ compiler, and benchmarks showing the opposite. If I update the benchmarks with another compiler added, it will be the Intel C++ Compiler, which I'm pretty sure produces faster code than VC++."

Lea says he's been accused of biasing the results by using the -O2 option for GCC, "supposedly because -O2 optimizes for space, thus slowing down the benchmark," he explains.

But this is not what -O2 does, he points out, referring to the GCC -O documentation:

JVM startup time was included in these results. "That means even with JVM startup time, Java is still faster than C++ in many of these tests," says Lea.

Some of the C++ tests would not compile. "I've never been very good at decoding GCC's error messages," he admits, "so if I couldn't fix a test with a trivial modification, I didn't include it in my benchmarks."

Lea also modified one of the tests, the string concatenation test for Java.

"The test was creating a new StringBuffer in each iteration of the loop, which was just silly," he explains. "I updated the code to use a single StringBuffer and appending to it inside the loop."

(The updated tests at the original shootout use this new method.)

"Java lost this benchmark even with the modifications," Lea declares. "So if anyone wants to accuse me of biasing the results, they're going to have to try harder."

Several versions of some of the C++ tests (like matrix) were present in the original shootout source, he continues. 

"I used the versions without numbers in them, like matrix.g++ instead of matrix.g++2. I don't know which of these were used in the original benchmarks, but from my quick experimenting, the numberless ones generally ran faster than their numbered counterparts."

"Looking at them again," Lea says, "matrix.g++3 runs faster than the matrix.g++ that I use. However, it still runs slower than the Java version, so I don't plan to modify the graph/data unless someone asks me to, since getting that graph in the first place was sort of a pain.)"

He continues: "I've been told that the C++ code for the Method Call benchmark returns by value while the Java code returns by reference, and that modifying the C++ code to pass a pointer makes that benchmark faster. However, even with the modification, the C++ version still runs slower than the Java version."

Lea ran the tests many times before running the "official" recorded set of tests, so there was plenty of time for both Java and the C++ tests to "warm up" (both the Java and C++ tests got faster after he ran them a few times).

"I've been told that these tests are invalid because they were run with GCC," he concedes, adding: "I have seen both benchmarks that show GCC producing faster code than Visual Studio's VC++ compiler, and benchmarks showing the opposite. If I update the benchmarks with another compiler added, it will be the Intel C++ Compiler, which I'm pretty sure produces faster code than VC++."

Lea says he's been accused of biasing the results by using the -O2 option for GCC, "supposedly because -O2 optimizes for space, thus slowing down the benchmark," he explains.

But this is not what -O2 does, he points out, referring to the GCC -O documentation:

-O2: Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-speed tradeoff. The compiler does not perform loop unrolling or function inlining when you specify -O2. As compared to -O, this option increases both compilation time and the performance of the generated code.

"On the other hand, -O3 performs space-speed tradeoffs, and -O performs fewer optimizations. Thus, for these tests, I think O2 was the best choice," Lea concludes.

 

"I don't have an automated means of building and benchmarking these things (and the scripts that came with the original shootout didn't run for me)," he continues. "I really do want people to test it on their own machines, but it's going to take some work, I guess."

Lea compiled the C++ code with:

g++ [test].cpp -O2 -march=i386 -o [test]-386

g++ [test].cpp -O2 -march=i686 -o [test]-686

and the Java code with:

javac [test].java

To see how he ran the binaries, see the run log. You can download the source code he used in either .bz2 or .zip format.

Using the Server JVM

Every form of Sun's Java runtime comes with both the "client VM" and the "server VM."

"Unfortunately, Java applications and applets run by default in the client VM," Lea observes. "The Server VM is much faster than the Client VM, but it has the downside of taking around 10% longer to start up, and it uses more memory."

Lea explains the two ways to run Java applications with the server VM as follows

  1. When launching a Java application from the command line, use java -server [arguments...] instead of java [arguments...]. For example, use java -server -jar beanshell.jar.
  2. Modify the jvm.cfg file in your Java installation. (It's a text file, so you can use Notepad or Emacs to edit it.) This is located in C:\Program Files\Java\j2reXXX\lib\i386\ on Windows, /usr/java/j2reXXX/lib/i386/ on Linux. You will see two lines:
    -client KNOWN
    -server KNOWN
    You should change them to:
    -server KNOWN
    -client KNOWN
    This change will cause the server VM to be run for all applications, unless they are run with the -client argument.

He can be contacted at

Every form of Sun's Java runtime comes with both the "client VM" and the "server VM."

"Unfortunately, Java applications and applets run by default in the client VM," Lea observes. "The Server VM is much faster than the Client VM, but it has the downside of taking around 10% longer to start up, and it uses more memory."

Lea explains the two ways to run Java applications with the server VM as follows

  1. When launching a Java application from the command line, use java -server [arguments...] instead of java [arguments...]. For example, use java -server -jar beanshell.jar.
  2. Modify the jvm.cfg file in your Java installation. (It's a text file, so you can use Notepad or Emacs to edit it.) This is located in C:\Program Files\Java\j2reXXX\lib\i386\ on Windows, /usr/java/j2reXXX/lib/i386/ on Linux. You will see two lines:
    -client KNOWN
    -server KNOWN
    You should change them to:
    -server KNOWN
    -client KNOWN
    This change will cause the server VM to be run for all applications, unless they are run with the -client argument.

He can be contacted at keith@kano.net.

Links

More Stories By Jeremy Geelan

Jeremy Geelan is Chairman & CEO of the 21st Century Internet Group, Inc. and an Executive Academy Member of the International Academy of Digital Arts & Sciences. Formerly he was President & COO at Cloud Expo, Inc. and Conference Chair of the worldwide Cloud Expo series. He appears regularly at conferences and trade shows, speaking to technology audiences across six continents. You can follow him on twitter: @jg21.

Comments (152) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
B Bennett 06/15/04 06:25:37 PM EDT

Mr Salarian and people with similar questions should consult the methodology notes from the original shootout (whose code was borrowed for this test) at

http://www.bagley.org/~doug/shootout/method.shtml

That should help clarify what exactly is getting tested, and by what methods.

A. Salarian 06/15/04 06:01:52 PM EDT

Sir, with all due respect I have to say your benchmark is worthless. You have note compared a single C++ program to a Java program. The codes you have tested do not show anything. Why not some real world situation on WHY people use C++ but not Java? Like some complex matrix operations using template based libraries like Blitz++ and equivalent Java industry level Matrix libs? Some applications with a large number of dynamic allocations and deallocations like a dynamic patricia tri in a LZW implementaion? Why not largescale FFTs to test the efficiency of cache management? Why you didn''t use the instrumented C++ (i.e. using the profiling guided compilations)?
You can get any result you wish as long as you don''t test any real world code...