Welcome!

Java Authors: Aater Suleman, Carmen Gonzalez, Pat Romanski, Paige Leidig, Liz McMillan

Related Topics: Java

Java: Article

Dynamic Sorting With Java

A reusable implementation

Those familiar with the java.util.Comparator interface of the Java API realize its capabilities for sorting a collection of objects based on an attribute of the objects in the collection. This works well when there is only a single field in which sorting is required. When more complex sorting is necessary, the limitations of sorting on a single field become obvious. What about the situation in which a user desires the functionality to sort selectively on any field in object collection? This article describes an implementation of the Comparator interface that along with the reflection API allows an object to be sorted dynamically on any of its publicly accessible fields.

Problem Statement
Let's describe the problem a bit more specifically. A collection of employee Transfer Objects (EmployeeTO class) exists. (For a description of the Transfer Object design pattern consult a software design pattern book.) Each EmployeeTO in the collection is a data container object for a single employee's information. For this example, our simplified EmployeeTO object contains only three pieces of data - employee ID, last name, and salary.

A Human Resources application also exists that uses this collection to display a list of all employee data to HR application users. The users of this system have the following requirements:

  1. Allow sorting on any field on the report
  2. Allow control of the sort order
Simple Solution
Before delving into our dynamic sorting solution that allows sorting on any attribute, let's first look at a simple solution that supports sorting on a single attribute only. This will demonstrate the basic behaviors of Comparator and from this we'll be able to glean the improvements we wish to make. This solution utilizes the more common use of the Comparator interface. There are two classes required to implement this.

EmployeeTO - Simple Version
First, our EmployeeTO can be made sortable by implementing the Comparator interface as shown in Listing 1. In addition to the getters and setters for ID, last name, and salary, EmployeeTO must implement the compare() and equals() methods in order to meet the Comparator's requirements. These methods define how EmployeeTO is to be sorted. The compare() method takes two parameters, both of type Object. Note that compare() returns an int. This return value tells the sort engine the collating sequence equality of two attribute values from each of the object parameters passed to compare(), respectively. We need to write the code that performs this evaluation. The first step in compare() is to cast the two parameters' objects to EmployeeTO objects and extract the employee IDs by calling the getId() method on each object in turn. Now we can compare the values. There are really only three possible outcomes that can result from this comparison. Table 1 describes the results based on these outcomes.

The other method we must code is the equals() method. Although this method is not used for sorting, it must be implemented in order to meet the contract of the Comparator interface.

Sorting the Collection - Simple Version
The SimpleTest class in Listing 2 adds three EmployeeTO objects to a List, then performs a sort on that Collection. (Listings 2-5 can be downloaded from www.sys-con.com/java/sourcec.cfm.) Line 30 of SimpleTest calls the static sort() method of the Collections class to actually perform the sort as follows.

Collections.sort(elements, new EmployeeTO());

The first parameter passed to sort() is the collection object we wish to have sorted. The second parameter is an object of type Comparator that contains the customized sorting logic - in this case EmployeeTO, which implements the Comparator interface. We certainly could have passed any instance of EmployeeTO as the second parameter to the above method call. However, instead of reusing one of the three values initially added to the collection, I chose to pass a new instance of the class for purposes of clarity.

A quick note on encapsulation and responsibility assigning seems to be in order here. In this case, it makes sense to encapsulate the specific compare() method sorting logic within EmployeeTO. With the information we have thus far, EmployeeTO is the only class that requires the knowledge of how it should be sorted. Later, as a dynamic sorting solution is provided, we'll see this sorting logic moved out of the Transfer Object class as the sorting logic becomes less specific to any one particular Transfer Object implementation.

This implementation will run but falls short when it comes to meeting the user's requirements. Remember, we need to be able to sort on any one of the three fields in EmployeeTO based on a user's choice. And let's not forget about the ability to control the sort order.

Enhancement Options
Let's think about the options that are available to improve what we have and meet the requirements. One option is to code nested if/else statements in our compare() method to allow for sorting on any field in the object based on some field name parameter passed to EmployeeTO. The problem with this solution is that it's difficult to maintain and the code could get rather lengthy as well. If new fields are added to EmployeeTO, we must update compare() appropriately.

What we would really like to do is invoke any given getter method of our Transfer Object at runtime without having to specifically hard code each possible method call in the compare() method. If we could do this, we could use the results of those method calls to dynamically determine equality. In addition, it would be desirable if this dynamic sorting could be reused for any Transfer Object. The good news is that this functionality can be achieved by leveraging the reflection API and the flexibility of the Collections.sort() method.

Reflection
The java.lang.reflect.Method class provides the ability to invoke a method of a given object based on the value of a string. For example, using a string containing the value "getId", the method getId() of EmployeeTO can be dynamically invoked at runtime. This string value can then be changed as we wish to cause any of the methods of EmployeeTO to be called.

The reflection API provides a variety of interesting features including the ability to pass parameters to methods and the ability to determine method return types. (For a complete list of these capabilities, consult the Java API Javadoc.) We will need the latter capability as the three getter methods of EmployeeTO return different types and it will thus be necessary to be aware of which type we have when doing the comparison in the compare() method. For example, we'll need to code a different sort of equality test on an int return value as opposed to a string.

java.util.Collections.sort()
A dynamic solution will also need to take advantage of the flexibility of the Collections.sort() method. Recall that in our simple sorting solution we passed an instance of an object that implemented the Comparator interface as the second parameter to Collections.sort(). In that case, it was the EmployeeTO object that contained the sorting logic. This worked great for what we needed it to do. Now, however, we want something a bit more sophisticated and flexible. What if we were to create a class that implemented Comparator, which was separate from each Transfer Object? In it we could place our dynamic sorting code and simply pass an instance of this new class as the second parameter to Collections.sort().

Doing this would cause several desirable results. First, we'll have completely decoupled any sorting logic from our Transfer Objects. This is highly desirable as it decreases not only the size of each Transfer Object by essentially eliminating the need for sorting code, but also removes the need for coding individual field comparison logic. Second, we'll have created a reusable utility class that can be used in many different situations where sorting is required. While reusability is not a specifically stated user requirement for our design, it is certainly desirable.

Dynamic Solution
Figure 1 is a UML diagram (with attribute and method details omitted) that shows how the components of both the simple and the dynamic sorting solutions fit together. Really, the only portion that has changed since our simple solution is where the Comparator interface gets implemented. In the first example, EmployeeTO implemented Comparator directly. Now DynamicComparator implements Comparator and contains an intelligent implementation of the compare() method that can be used by any class that requires a collection of objects to be sorted.

DynamicComparator
Listing 3 shows the completed code listing for DynamicComparator. There are a number of interesting things about this class. First, note the class signature. The class implements two interfaces - Comparator and Serializable. Comparator should come as no surprise since that interface is the essence of the sorting capabilities we desire. Also, although not a requirement, the API docs recommend that any class implementing Comparator implement Serializable as well.

Second, look at the static sort() method. Classes wishing to utilize DynamicComparator will call this method rather than Collections.sort(). I've decided to make sort() static to mimic the Collections.sort() method. Although the DynamicComparator.sort() method is called statically, internally DynamicComparator creates an instance of itself. This is necessary in order for it to provide access to the nonstatic compare() and equals() methods of the Comparator interface that it supports. Next note how this method takes three parameters. The first is the collection object to be sorted. The second is a string that defines the field of each object in the collection on which sorting should be performed. The last parameter is a Boolean specifying the sort order. These three parameters are used as arguments to create a new instance of DynamicComparator that is the second parameter passed to the Collections.sort() method.

Third, take a look at the compare() method. This is where the reflection code really kicks in. One of the first things we need to obtain is a reference to a method object at line 43. We'll use this reference to call methods dynamically. This task is done using the getMethod() helper method, which obtains this value via reflection. Next, we need to determine the return type of the methods we are about to call. Remember that we will need to compare the attribute values of the two objects passed into compare(). If the return type is an int, for instance, we'll certainly have to write different code to do the comparison than if the return type is a string. Once we have the return type, we examine it and, based on its value, dynamically perform the actual method invocation and resulting comparison of the two values.

Note that currently there are three separate "if" test blocks - one each for string, int, and double. The implementation requires comparison logic for any method return type we expect to encounter. For the range of return types in our EmployeeTO example, these three are sufficient. However, additional code would need to be added to DynamicComparator if comparisons of other types are required - short, java.util.Date, java.math.BigDecimal, etc. Coding for each specific return type here is unavoidable as there is no way to dynamically cast Java objects. Similarly, Java-supplied nonobject data types like int, long, and double use entirely different comparison operators than do first-class object types like String or Date.

There are some other important points about this code. First, DynamicComparator fully supports null values. If either or both of the arguments passed to compare() are null, this method knows how to handle the situation accordingly. Second, look at each return statement within compare(). Remember the requirement that the user be able to control not only the sort field but also the sort order? This code supports the latter by essentially reversing the default sort order with a call to getSortOrder(). This is done if the user has decided to sort the result in descending order based on the Boolean value passed into the constructor from the sort() method. Third, the constructMethodName() method converts a Transfer Object attribute name string into a method name by prepending a "get" string and capitalizing the first character of the passed value. For instance, constructMethodName() would convert "salary" to "getSalary".

Last, the equals() method is needed to complete the interface requirements.

EmployeeTO - Enhanced Version
Listing 4 shows the enhanced version of EmployeeTO. The most obvious change is that EmployeeTO is now even simpler than before. Now that all of the sorting logic has been moved to DynamicComparator and the class no longer implements Comparator, we don't need to implement the compare() and equals() methods.

Sorting the Collection - Dynamic Version
Listing 5 is the code for DynamicTest. The only change between this class and SimpleTest is how the sort is called. Here we pass the three parameters to DynamicComparator.sort() (Collection Object, the decapitalized attribute name, and sort ascending flag) and let the DynamicComparator do the rest.

DynamicTest could just as easily have sorted on last name by passing "lastName" or on employee ID by passing "id" as the second parameter on line 29.

Solution Discussion
Building a class such as DynamicComparator has many benefits in an application that requires robust sorting capabilities. In this design, we have created a reusable, loosely coupled API that can be used to sort a collection of objects based on getter methods. The sort field is easily configurable and also allows control over the sort order.

This design, however, is not without trade-offs. Although using the reflection API allows us to do lots of cool things, using reflection can slow performance. This is particularly true in applications using pre-1.4 versions of Java. In addition, it's possible that applications wishing to sort very large collections may find DynamicComparator too slow.

Other inadequacies of DynamicComparator might become evident as well. Although it allows sorting on any one attribute of a collection of objects in an easily configurable manner, DynamicComparator does not address the potential need to sort by multiple fields - primary and secondary field sorts like that occur automatically with the ORDER BY clause in Structured Query Language (SQL).

Conclusion
This article introduced a reusable implementation of the Comparator interface that utilizes Java reflection to dynamically sort a collection of objects on any one of any number of fields within that object.

If your application or framework has a need for this specific functionality, perhaps this design will fit your needs.

More Stories By York Davis

York Davis is a senior managing consultant at Software Architects, Inc. With more than 12 years in the software development field, York has been using Java for more than five years and has extensive experience building enterprise application architectures.

Comments (13) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Java 04/09/08 09:42:59 AM EDT

Refer below link for code
http://photos.sys-con.com/story/res/45837/source.html

Doug Bell 08/26/04 04:26:21 AM EDT

I meant to mention one other thing about the articles implementation that nobody else mentioned. The implementation and comment for the DynamicComparator.equals method illustrates confusion about the purpose of the method.

As implemented, the equals method breaks all contracts for equals, including the Comparator contract. It would be better to have left the default implementation of equals rather than override it with a method that always returns true.

The equals method is for comparing the DynamicComparator object to another object to see if two Comparators produce the same results. This would not be too difficult to properly implement by checking for equals between the method and sortAsc fields (and Comparator fields if my previous suggestion was implemented).

One final comment is that the Collection should not be passed to the DynamicComparator constructor. It is only needed by the sort method.

Doug Bell 08/26/04 04:11:27 AM EDT

sMyles has the right idea about how to fix the DynamicComparator class. (Some of the other comments and code suggestions missed the mark in one or more areas.) Certainly, you''d rather not have to keep modifying the DynamicComparator class to add new algorithms--this is not the correct design for "encapsulation and responsibility assignment" that the article discusses.

However, instead of sMyles suggestion for option 4, just overload sort() and the DynamicComparator constructor to accept a Comparator for comparing any two fields that don''t implement Comparable. This will also allow fields that do implement Comparable, such as String, to use alternate compare algorithms, such as compareToIgnoreCase.

David Perelman-Hall 08/11/04 03:26:40 PM EDT

/*
This can be implemented in 3 very simple terms to capture anything that implements 1) Comparable or 2) Comparator or 3) is a primitive. I''ve rewritten the main function to see if the comparable objects retrieved by the "reflected method" implements one of these three concepts. Also stripped out the Serializable, because how likely are you to want to serialize a Comparator? And cut down on the class size by reducingnumber of methods by moving the getMethod and invoke methods back into the class itself. The idea guiding York''s original thinking is a wonderful idea.

--Dave
*/

import java.lang.reflect.Method;
import java.lang.reflect.InvocationTargetException;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.Comparator;
import java.util.List;
import java.util.ArrayList;

public final class DynamicComparator implements Comparator
{
// Class Members
public static final int EQUAL = 0;
public static final int LESS_THAN = -1;
public static final int GREATER_THAN = 1;

// Object Members
private Collection collection;
private String methodName;
private boolean sortAsc;

// Private Constructor
private DynamicComparator(Collection collection, String methodName, boolean sortAsc)
{
this.collection = collection;
this.methodName = methodName;
this.sortAsc = sortAsc;
}

// Sort invocation starts here
public static void sort(List list, String methodName, boolean sortAsc)
{
Collections.sort(list, new DynamicComparator(list, methodName, sortAsc));
}

// Compare for Collections.sort here
public int compare(Object o1, Object o2)
{
int rv = 0;

try
{
// Determine the return type
Method method = o1.getClass().getMethod(methodName, null);
Class c = method.getReturnType();
System.out.println("return type is " + c);

// Invoke method to gather two comparable objects
java.lang.Object result1 = method.invoke(o1, null);
java.lang.Object result2 = method.invoke(o2, null);

if(c.isAssignableFrom(Class.forName("java.util.Comparator")))
{
System.out.println(c + " implements java.util.Comparator");
java.util.Comparator c1 = (java.util.Comparator) result1;
java.util.Comparator c2 = (java.util.Comparator) result2;
rv = c1.compare(c1,c2);
}
else if(Class.forName("java.lang.Comparable").isAssignableFrom(c))
{
System.out.println(c + "implements java.lang.Comparable");
java.lang.Comparable c1 = (java.lang.Comparable) result1;
java.lang.Comparable c2 = (java.lang.Comparable) result2;
rv = c1.compareTo(c2);
}
else if(c.isPrimitive())
{
System.out.println("c.isPrimitive");
long f1 = ((Number) result1).longValue();
long f2 = ((Number) result2).longValue();
if (f1 == f2) rv = EQUAL;
else if (f1 < f2) rv = LESS_THAN;
else if (f1 > f2) rv = GREATER_THAN;
}
else
{
throw new RuntimeException("DynamicComparator does not currently support ''" + c.getName() + "''!");
}
}
catch (Exception nsme)
{
System.out.println("Error " + nsme);
}
return rv * getSortOrder();
}

/**
* Not used for sorting. Only here to meet the requirements of the Comparator
interface.
*
* @param o The object for comparison
* @return boolean
*/
public boolean equals(Object o)
{
return true;
}

// Sort order getter
private int getSortOrder()
{
return sortAsc ? 1 : -1;
}

// Test
public static void main(String args[])
{
List elements = new ArrayList();

EmployeeTO e2 = new EmployeeTO();
e2.setId(2);
e2.setLastName("Nesler");
e2.setSalary(13000);
elements.add(e2);

EmployeeTO e1 = new EmployeeTO();
e1.setId(1);
e1.setLastName("Davis");
e1.setSalary(11000);
elements.add(e1);

EmployeeTO e3 = new EmployeeTO();
e3.setId(3);
e3.setLastName("Phachantry");
e3.setSalary(12000);
elements.add(e3);

DynamicComparator.sort(elements, "getLastName", true);

final Iterator li = elements.iterator();
EmployeeTO e = null;
while (li.hasNext())
{
e = (EmployeeTO) li.next();
System.out.println(e.toString());
}
}
}

sMyles 08/11/04 03:14:36 PM EDT

It is important to note that invoke() returns an Object, not a primitive.
Therefore, no extra code is required to compare primitives, since invoke() would return an instance of its wrapper class. All primitive wrappers implement Comparable.

Knowing this, compare() should do the following:
1. Cast the two return values to Comparable without checking, because if they''re not comparable, we can''t compare them anyway.
This is the behavior of Collections.sort() when no Comparator is specified. (See Arrays.mergeSort()).
Either that or use the logic described in the original method, by returning LESS_THAN.

2. Perform the null comparisons on val1 and val2 (without the introduction of val1Null and val2Null) and return the appropriate value * getSortOrder(), if applicable.

3. If it turns out neither return value is null, return val1.compareTo(val2) * getSortOrder()

4 (optional). Include a special case for String objects and return val1.compareToIgnoreCase(val2) * getSortOrder(). How compare() should treat case sensitivity could be specified as a parameter to sort().

Also of note:
An object is an instance of all interfaces its class implements, so the interfaces array and implementsComparable processing could be replaced by (f1 instanceof Comparable)
Additionally, the compare() method must either return an int or throw an exception. If implementsComparable is false, this method does neither.

Ceri 08/10/04 05:07:56 PM EDT

Sorry, formatting seems to have been stripped from my previous message.

Ceri

Ceri 08/10/04 05:06:17 PM EDT

The compare method needs to handle primitive types separately. All non-primitives that implement comparable can be easily grouped together into a single if block (to replace the String handling section of Listing 3):

Class[] interfaces = method.getReturnType().getInterfaces();
boolean implementsComparable = false;
for (int i = 0; i < interfaces.length; i++) {
if (interfaces[i].getName().equals("java.lang.Comparable")) {
implementsComparable = true;
break;
}
}
if (implementsComparable) {
Comparable f1 = (Comparable) invoke(method, o1);
method = getMethod(o2);
Comparable f2 = (Comparable) invoke(method, 02);
if (f1 != null && f2 != null) {
return f1.compareTo(f2) * getSortOrder();
}
if (f1 == null && f2 != null) {
return LESS_THAN * getSortOrder();
}
if (f1 != null && f2 == null) {
return GREATER_THAN * getSortOrder();
}
if (f1 == null && f2 == null) {
return EQUAL * getSortOrder();
}
}

Mike 08/10/04 12:16:23 PM EDT

York the method "public int compare(Object o1, Object o2)" is long and makes the class look cluddered(like it needs to be refactored), especially if more fields where added requiring more test to be implemented in this method. Wouldn''t separate class implementation for each sorting type help with this, but on second thought this would lead to class proliferation. Okay in the future, would sometype of generics in 1.5.0 work here for the comparing class in addition to the usage of reflection to stream line this code.

York 08/09/04 01:22:26 PM EDT

Source code now available for download!

S Opoku-Boadu 08/09/04 03:26:33 AM EDT

Cannot locate Listings 2 - 5

S Opoku-Boadu 08/09/04 03:25:52 AM EDT

Cannot locate Listings 2 - 5

Trevor Leach 08/09/04 12:38:46 AM EDT

The listings are not in the print version either. Perhaps we''ll get emailed when they are found?

D Polansky 08/05/04 05:41:40 PM EDT

Where are listings 3, 4, and 5 referenced in the article?

@ThingsExpo Stories
SYS-CON Events announced today that Harbinger Systems will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Harbinger Systems is a global company providing software technology services. Since 1990, Harbinger has developed a strong customer base worldwide. Its customers include software product companies ranging from hi-tech start-ups in Silicon Valley to leading product companies in the US and large in-house IT organizations.
The only place to be June 9-11 is Cloud Expo & @ThingsExpo 2015 East at the Javits Center in New York City. Join us there as delegates from all over the world come to listen to and engage with speakers & sponsors from the leading Cloud Computing, IoT & Big Data companies. Cloud Expo & @ThingsExpo are the leading events covering the booming market of Cloud Computing, IoT & Big Data for the enterprise. Speakers from all over the world will be hand-picked for their ability to explore the economic strategies that utility/cloud computing provides. Whether public, private, or in a hybrid form, clo...
SYS-CON Events announces a new pavilion on the Cloud Expo floor where WebRTC converges with the Internet of Things. Pavilion will showcase WebRTC and the Internet of Things. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices--computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridsto...
SYS-CON Events announced today that Red Hat, the world's leading provider of open source solutions, will exhibit at Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Red Hat is the world's leading provider of open source software solutions, using a community-powered approach to reliable and high-performing cloud, Linux, middleware, storage and virtualization technologies. Red Hat also offers award-winning support, training, and consulting services. As the connective hub in a global network of enterprises, partners, a...
As the Internet of Things unfolds, mobile and wearable devices are blurring the line between physical and digital, integrating ever more closely with our interests, our routines, our daily lives. Contextual computing and smart, sensor-equipped spaces bring the potential to walk through a world that recognizes us and responds accordingly. We become continuous transmitters and receivers of data. In his session at Internet of @ThingsExpo, Andrew Bolwell, Director of Innovation for HP’s Printing and Personal Systems Group, will discuss how key attributes of mobile technology – touch input, senso...
The Internet of Things (IoT) is making everything it touches smarter – smart devices, smart cars and smart cities. And lucky us, we’re just beginning to reap the benefits as we work toward a networked society. However, this technology-driven innovation is impacting more than just individuals. The IoT has an environmental impact as well, which brings us to the theme of this month’s #IoTuesday Twitter chat. The ability to remove inefficiencies through connected objects is driving change throughout every sector, including waste management. BigBelly Solar, located just outside of Boston, is trans...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, will examine three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics...
Internet of @ThingsExpo Silicon Valley announced on Thursday its first 12 all-star speakers and sessions for its upcoming event, which will take place November 4-6, 2014, at the Santa Clara Convention Center in California. @ThingsExpo, the first and largest IoT event in the world, debuted at the Javits Center in New York City in June 10-12, 2014 with over 6,000 delegates attending the conference. Among the first 12 announced world class speakers, IBM will present two highly popular IoT sessions, which will take place November 4-6, 2014 at the Santa Clara Convention Center in Santa Clara, Calif...
The Internet of Things (IoT) promises to evolve the way the world does business; however, understanding how to apply it to your company can be a mystery. Most people struggle with understanding the potential business uses or tend to get caught up in the technology, resulting in solutions that fail to meet even minimum business goals. In his session at Internet of @ThingsExpo, Jesse Shiah, CEO / President / Co-Founder of AgilePoint Inc., will show what is needed to leverage the IoT to transform your business. He will discuss opportunities and challenges ahead for the IoT from a market and tec...
SYS-CON Events announced today that TeleStax, the main sponsor of Mobicents, will exhibit at Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. TeleStax provides Open Source Communications software and services that facilitate the shift from legacy SS7 based IN networks to IP based LTE and IMS networks hosted on private (on-premise), hybrid or public clouds. TeleStax products include Restcomm, JSLEE, SMSC Gateway, USSD Gateway, SS7 Resource Adaptors, SIP Servlets, Rich Multimedia Services, Presence Services/RCS, Diame...
From a software development perspective IoT is about programming "things," about connecting them with each other or integrating them with existing applications. In his session at @ThingsExpo, Yakov Fain, co-founder of Farata Systems and SuranceBay, will show you how small IoT-enabled devices from multiple manufacturers can be integrated into the workflow of an enterprise application. This is a practical demo of building a framework and components in HTML/Java/Mobile technologies to serve as a platform that can integrate new devices as they become available on the market.
SYS-CON Events announced today that O'Reilly Media has been named “Media Sponsor” of SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. O'Reilly Media spreads the knowledge of innovators through its books, online services, magazines, and conferences. Since 1978, O'Reilly Media has been a chronicler and catalyst of cutting-edge development, homing in on the technology trends that really matter and spurring their adoption by amplifying "faint signals" from the alpha geeks who are creating the future. An...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace.
SYS-CON Events announced today that Aria Systems, the recurring revenue expert, has been named "Bronze Sponsor" of SYS-CON's 15th International Cloud Expo®, which will take place on November 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Aria Systems helps leading businesses connect their customers with the products and services they love. Industry leaders like Pitney Bowes, Experian, AAA NCNU, VMware, HootSuite and many others choose Aria to power their recurring revenue business and deliver exceptional experiences to their customers.
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
As a disruptive technology, Web Real-Time Communication (WebRTC), which is an emerging standard of web communications, is redefining how brands and consumers communicate in real time. The on-going narrative around WebRTC has largely been around incorporating video, audio and chat functions to apps. In his session at Internet of @ThingsExpo, Alex Gouaillard, Founder and CTO of Temasys Communications, will look at a fourth element – data channels – and talk about its potential to move WebRTC beyond browsers and into the Internet of Things.
SYS-CON Events announced today that Gigaom Research has been named "Media Sponsor" of SYS-CON's 15th International Cloud Expo®, which will take place on November 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Ashar Baig, Research Director, Cloud, at Gigaom Research, will also lead a Power Panel on the topic "Choosing the Right Cloud Option." Gigaom Research provides timely, in-depth analysis of emerging technologies for individual and corporate subscribers. Gigaom Research's network of 200+ independent analysts provides new content daily that bridges the gap between break...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.