Welcome!

Java IoT Authors: Liz McMillan, Elizabeth White, Carmen Gonzalez, Mehdi Daoudi, Yeshim Deniz

Related Topics: Java IoT

Java IoT: Article

Dynamic Sorting With Java

A reusable implementation

Those familiar with the java.util.Comparator interface of the Java API realize its capabilities for sorting a collection of objects based on an attribute of the objects in the collection. This works well when there is only a single field in which sorting is required. When more complex sorting is necessary, the limitations of sorting on a single field become obvious. What about the situation in which a user desires the functionality to sort selectively on any field in object collection? This article describes an implementation of the Comparator interface that along with the reflection API allows an object to be sorted dynamically on any of its publicly accessible fields.

Problem Statement
Let's describe the problem a bit more specifically. A collection of employee Transfer Objects (EmployeeTO class) exists. (For a description of the Transfer Object design pattern consult a software design pattern book.) Each EmployeeTO in the collection is a data container object for a single employee's information. For this example, our simplified EmployeeTO object contains only three pieces of data - employee ID, last name, and salary.

A Human Resources application also exists that uses this collection to display a list of all employee data to HR application users. The users of this system have the following requirements:

  1. Allow sorting on any field on the report
  2. Allow control of the sort order
Simple Solution
Before delving into our dynamic sorting solution that allows sorting on any attribute, let's first look at a simple solution that supports sorting on a single attribute only. This will demonstrate the basic behaviors of Comparator and from this we'll be able to glean the improvements we wish to make. This solution utilizes the more common use of the Comparator interface. There are two classes required to implement this.

EmployeeTO - Simple Version
First, our EmployeeTO can be made sortable by implementing the Comparator interface as shown in Listing 1. In addition to the getters and setters for ID, last name, and salary, EmployeeTO must implement the compare() and equals() methods in order to meet the Comparator's requirements. These methods define how EmployeeTO is to be sorted. The compare() method takes two parameters, both of type Object. Note that compare() returns an int. This return value tells the sort engine the collating sequence equality of two attribute values from each of the object parameters passed to compare(), respectively. We need to write the code that performs this evaluation. The first step in compare() is to cast the two parameters' objects to EmployeeTO objects and extract the employee IDs by calling the getId() method on each object in turn. Now we can compare the values. There are really only three possible outcomes that can result from this comparison. Table 1 describes the results based on these outcomes.

The other method we must code is the equals() method. Although this method is not used for sorting, it must be implemented in order to meet the contract of the Comparator interface.

Sorting the Collection - Simple Version
The SimpleTest class in Listing 2 adds three EmployeeTO objects to a List, then performs a sort on that Collection. (Listings 2-5 can be downloaded from www.sys-con.com/java/sourcec.cfm.) Line 30 of SimpleTest calls the static sort() method of the Collections class to actually perform the sort as follows.

Collections.sort(elements, new EmployeeTO());

The first parameter passed to sort() is the collection object we wish to have sorted. The second parameter is an object of type Comparator that contains the customized sorting logic - in this case EmployeeTO, which implements the Comparator interface. We certainly could have passed any instance of EmployeeTO as the second parameter to the above method call. However, instead of reusing one of the three values initially added to the collection, I chose to pass a new instance of the class for purposes of clarity.

A quick note on encapsulation and responsibility assigning seems to be in order here. In this case, it makes sense to encapsulate the specific compare() method sorting logic within EmployeeTO. With the information we have thus far, EmployeeTO is the only class that requires the knowledge of how it should be sorted. Later, as a dynamic sorting solution is provided, we'll see this sorting logic moved out of the Transfer Object class as the sorting logic becomes less specific to any one particular Transfer Object implementation.

This implementation will run but falls short when it comes to meeting the user's requirements. Remember, we need to be able to sort on any one of the three fields in EmployeeTO based on a user's choice. And let's not forget about the ability to control the sort order.

Enhancement Options
Let's think about the options that are available to improve what we have and meet the requirements. One option is to code nested if/else statements in our compare() method to allow for sorting on any field in the object based on some field name parameter passed to EmployeeTO. The problem with this solution is that it's difficult to maintain and the code could get rather lengthy as well. If new fields are added to EmployeeTO, we must update compare() appropriately.

What we would really like to do is invoke any given getter method of our Transfer Object at runtime without having to specifically hard code each possible method call in the compare() method. If we could do this, we could use the results of those method calls to dynamically determine equality. In addition, it would be desirable if this dynamic sorting could be reused for any Transfer Object. The good news is that this functionality can be achieved by leveraging the reflection API and the flexibility of the Collections.sort() method.

Reflection
The java.lang.reflect.Method class provides the ability to invoke a method of a given object based on the value of a string. For example, using a string containing the value "getId", the method getId() of EmployeeTO can be dynamically invoked at runtime. This string value can then be changed as we wish to cause any of the methods of EmployeeTO to be called.

The reflection API provides a variety of interesting features including the ability to pass parameters to methods and the ability to determine method return types. (For a complete list of these capabilities, consult the Java API Javadoc.) We will need the latter capability as the three getter methods of EmployeeTO return different types and it will thus be necessary to be aware of which type we have when doing the comparison in the compare() method. For example, we'll need to code a different sort of equality test on an int return value as opposed to a string.

java.util.Collections.sort()
A dynamic solution will also need to take advantage of the flexibility of the Collections.sort() method. Recall that in our simple sorting solution we passed an instance of an object that implemented the Comparator interface as the second parameter to Collections.sort(). In that case, it was the EmployeeTO object that contained the sorting logic. This worked great for what we needed it to do. Now, however, we want something a bit more sophisticated and flexible. What if we were to create a class that implemented Comparator, which was separate from each Transfer Object? In it we could place our dynamic sorting code and simply pass an instance of this new class as the second parameter to Collections.sort().

Doing this would cause several desirable results. First, we'll have completely decoupled any sorting logic from our Transfer Objects. This is highly desirable as it decreases not only the size of each Transfer Object by essentially eliminating the need for sorting code, but also removes the need for coding individual field comparison logic. Second, we'll have created a reusable utility class that can be used in many different situations where sorting is required. While reusability is not a specifically stated user requirement for our design, it is certainly desirable.

Dynamic Solution
Figure 1 is a UML diagram (with attribute and method details omitted) that shows how the components of both the simple and the dynamic sorting solutions fit together. Really, the only portion that has changed since our simple solution is where the Comparator interface gets implemented. In the first example, EmployeeTO implemented Comparator directly. Now DynamicComparator implements Comparator and contains an intelligent implementation of the compare() method that can be used by any class that requires a collection of objects to be sorted.

DynamicComparator
Listing 3 shows the completed code listing for DynamicComparator. There are a number of interesting things about this class. First, note the class signature. The class implements two interfaces - Comparator and Serializable. Comparator should come as no surprise since that interface is the essence of the sorting capabilities we desire. Also, although not a requirement, the API docs recommend that any class implementing Comparator implement Serializable as well.

Second, look at the static sort() method. Classes wishing to utilize DynamicComparator will call this method rather than Collections.sort(). I've decided to make sort() static to mimic the Collections.sort() method. Although the DynamicComparator.sort() method is called statically, internally DynamicComparator creates an instance of itself. This is necessary in order for it to provide access to the nonstatic compare() and equals() methods of the Comparator interface that it supports. Next note how this method takes three parameters. The first is the collection object to be sorted. The second is a string that defines the field of each object in the collection on which sorting should be performed. The last parameter is a Boolean specifying the sort order. These three parameters are used as arguments to create a new instance of DynamicComparator that is the second parameter passed to the Collections.sort() method.

Third, take a look at the compare() method. This is where the reflection code really kicks in. One of the first things we need to obtain is a reference to a method object at line 43. We'll use this reference to call methods dynamically. This task is done using the getMethod() helper method, which obtains this value via reflection. Next, we need to determine the return type of the methods we are about to call. Remember that we will need to compare the attribute values of the two objects passed into compare(). If the return type is an int, for instance, we'll certainly have to write different code to do the comparison than if the return type is a string. Once we have the return type, we examine it and, based on its value, dynamically perform the actual method invocation and resulting comparison of the two values.

Note that currently there are three separate "if" test blocks - one each for string, int, and double. The implementation requires comparison logic for any method return type we expect to encounter. For the range of return types in our EmployeeTO example, these three are sufficient. However, additional code would need to be added to DynamicComparator if comparisons of other types are required - short, java.util.Date, java.math.BigDecimal, etc. Coding for each specific return type here is unavoidable as there is no way to dynamically cast Java objects. Similarly, Java-supplied nonobject data types like int, long, and double use entirely different comparison operators than do first-class object types like String or Date.

There are some other important points about this code. First, DynamicComparator fully supports null values. If either or both of the arguments passed to compare() are null, this method knows how to handle the situation accordingly. Second, look at each return statement within compare(). Remember the requirement that the user be able to control not only the sort field but also the sort order? This code supports the latter by essentially reversing the default sort order with a call to getSortOrder(). This is done if the user has decided to sort the result in descending order based on the Boolean value passed into the constructor from the sort() method. Third, the constructMethodName() method converts a Transfer Object attribute name string into a method name by prepending a "get" string and capitalizing the first character of the passed value. For instance, constructMethodName() would convert "salary" to "getSalary".

Last, the equals() method is needed to complete the interface requirements.

EmployeeTO - Enhanced Version
Listing 4 shows the enhanced version of EmployeeTO. The most obvious change is that EmployeeTO is now even simpler than before. Now that all of the sorting logic has been moved to DynamicComparator and the class no longer implements Comparator, we don't need to implement the compare() and equals() methods.

Sorting the Collection - Dynamic Version
Listing 5 is the code for DynamicTest. The only change between this class and SimpleTest is how the sort is called. Here we pass the three parameters to DynamicComparator.sort() (Collection Object, the decapitalized attribute name, and sort ascending flag) and let the DynamicComparator do the rest.

DynamicTest could just as easily have sorted on last name by passing "lastName" or on employee ID by passing "id" as the second parameter on line 29.

Solution Discussion
Building a class such as DynamicComparator has many benefits in an application that requires robust sorting capabilities. In this design, we have created a reusable, loosely coupled API that can be used to sort a collection of objects based on getter methods. The sort field is easily configurable and also allows control over the sort order.

This design, however, is not without trade-offs. Although using the reflection API allows us to do lots of cool things, using reflection can slow performance. This is particularly true in applications using pre-1.4 versions of Java. In addition, it's possible that applications wishing to sort very large collections may find DynamicComparator too slow.

Other inadequacies of DynamicComparator might become evident as well. Although it allows sorting on any one attribute of a collection of objects in an easily configurable manner, DynamicComparator does not address the potential need to sort by multiple fields - primary and secondary field sorts like that occur automatically with the ORDER BY clause in Structured Query Language (SQL).

Conclusion
This article introduced a reusable implementation of the Comparator interface that utilizes Java reflection to dynamically sort a collection of objects on any one of any number of fields within that object.

If your application or framework has a need for this specific functionality, perhaps this design will fit your needs.

More Stories By York Davis

York Davis is a senior managing consultant at Software Architects, Inc. With more than 12 years in the software development field, York has been using Java for more than five years and has extensive experience building enterprise application architectures.

Comments (13) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Java 04/09/08 09:42:59 AM EDT

Refer below link for code
http://photos.sys-con.com/story/res/45837/source.html

Doug Bell 08/26/04 04:26:21 AM EDT

I meant to mention one other thing about the articles implementation that nobody else mentioned. The implementation and comment for the DynamicComparator.equals method illustrates confusion about the purpose of the method.

As implemented, the equals method breaks all contracts for equals, including the Comparator contract. It would be better to have left the default implementation of equals rather than override it with a method that always returns true.

The equals method is for comparing the DynamicComparator object to another object to see if two Comparators produce the same results. This would not be too difficult to properly implement by checking for equals between the method and sortAsc fields (and Comparator fields if my previous suggestion was implemented).

One final comment is that the Collection should not be passed to the DynamicComparator constructor. It is only needed by the sort method.

Doug Bell 08/26/04 04:11:27 AM EDT

sMyles has the right idea about how to fix the DynamicComparator class. (Some of the other comments and code suggestions missed the mark in one or more areas.) Certainly, you''d rather not have to keep modifying the DynamicComparator class to add new algorithms--this is not the correct design for "encapsulation and responsibility assignment" that the article discusses.

However, instead of sMyles suggestion for option 4, just overload sort() and the DynamicComparator constructor to accept a Comparator for comparing any two fields that don''t implement Comparable. This will also allow fields that do implement Comparable, such as String, to use alternate compare algorithms, such as compareToIgnoreCase.

David Perelman-Hall 08/11/04 03:26:40 PM EDT

/*
This can be implemented in 3 very simple terms to capture anything that implements 1) Comparable or 2) Comparator or 3) is a primitive. I''ve rewritten the main function to see if the comparable objects retrieved by the "reflected method" implements one of these three concepts. Also stripped out the Serializable, because how likely are you to want to serialize a Comparator? And cut down on the class size by reducingnumber of methods by moving the getMethod and invoke methods back into the class itself. The idea guiding York''s original thinking is a wonderful idea.

--Dave
*/

import java.lang.reflect.Method;
import java.lang.reflect.InvocationTargetException;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.Comparator;
import java.util.List;
import java.util.ArrayList;

public final class DynamicComparator implements Comparator
{
// Class Members
public static final int EQUAL = 0;
public static final int LESS_THAN = -1;
public static final int GREATER_THAN = 1;

// Object Members
private Collection collection;
private String methodName;
private boolean sortAsc;

// Private Constructor
private DynamicComparator(Collection collection, String methodName, boolean sortAsc)
{
this.collection = collection;
this.methodName = methodName;
this.sortAsc = sortAsc;
}

// Sort invocation starts here
public static void sort(List list, String methodName, boolean sortAsc)
{
Collections.sort(list, new DynamicComparator(list, methodName, sortAsc));
}

// Compare for Collections.sort here
public int compare(Object o1, Object o2)
{
int rv = 0;

try
{
// Determine the return type
Method method = o1.getClass().getMethod(methodName, null);
Class c = method.getReturnType();
System.out.println("return type is " + c);

// Invoke method to gather two comparable objects
java.lang.Object result1 = method.invoke(o1, null);
java.lang.Object result2 = method.invoke(o2, null);

if(c.isAssignableFrom(Class.forName("java.util.Comparator")))
{
System.out.println(c + " implements java.util.Comparator");
java.util.Comparator c1 = (java.util.Comparator) result1;
java.util.Comparator c2 = (java.util.Comparator) result2;
rv = c1.compare(c1,c2);
}
else if(Class.forName("java.lang.Comparable").isAssignableFrom(c))
{
System.out.println(c + "implements java.lang.Comparable");
java.lang.Comparable c1 = (java.lang.Comparable) result1;
java.lang.Comparable c2 = (java.lang.Comparable) result2;
rv = c1.compareTo(c2);
}
else if(c.isPrimitive())
{
System.out.println("c.isPrimitive");
long f1 = ((Number) result1).longValue();
long f2 = ((Number) result2).longValue();
if (f1 == f2) rv = EQUAL;
else if (f1 < f2) rv = LESS_THAN;
else if (f1 > f2) rv = GREATER_THAN;
}
else
{
throw new RuntimeException("DynamicComparator does not currently support ''" + c.getName() + "''!");
}
}
catch (Exception nsme)
{
System.out.println("Error " + nsme);
}
return rv * getSortOrder();
}

/**
* Not used for sorting. Only here to meet the requirements of the Comparator
interface.
*
* @param o The object for comparison
* @return boolean
*/
public boolean equals(Object o)
{
return true;
}

// Sort order getter
private int getSortOrder()
{
return sortAsc ? 1 : -1;
}

// Test
public static void main(String args[])
{
List elements = new ArrayList();

EmployeeTO e2 = new EmployeeTO();
e2.setId(2);
e2.setLastName("Nesler");
e2.setSalary(13000);
elements.add(e2);

EmployeeTO e1 = new EmployeeTO();
e1.setId(1);
e1.setLastName("Davis");
e1.setSalary(11000);
elements.add(e1);

EmployeeTO e3 = new EmployeeTO();
e3.setId(3);
e3.setLastName("Phachantry");
e3.setSalary(12000);
elements.add(e3);

DynamicComparator.sort(elements, "getLastName", true);

final Iterator li = elements.iterator();
EmployeeTO e = null;
while (li.hasNext())
{
e = (EmployeeTO) li.next();
System.out.println(e.toString());
}
}
}

sMyles 08/11/04 03:14:36 PM EDT

It is important to note that invoke() returns an Object, not a primitive.
Therefore, no extra code is required to compare primitives, since invoke() would return an instance of its wrapper class. All primitive wrappers implement Comparable.

Knowing this, compare() should do the following:
1. Cast the two return values to Comparable without checking, because if they''re not comparable, we can''t compare them anyway.
This is the behavior of Collections.sort() when no Comparator is specified. (See Arrays.mergeSort()).
Either that or use the logic described in the original method, by returning LESS_THAN.

2. Perform the null comparisons on val1 and val2 (without the introduction of val1Null and val2Null) and return the appropriate value * getSortOrder(), if applicable.

3. If it turns out neither return value is null, return val1.compareTo(val2) * getSortOrder()

4 (optional). Include a special case for String objects and return val1.compareToIgnoreCase(val2) * getSortOrder(). How compare() should treat case sensitivity could be specified as a parameter to sort().

Also of note:
An object is an instance of all interfaces its class implements, so the interfaces array and implementsComparable processing could be replaced by (f1 instanceof Comparable)
Additionally, the compare() method must either return an int or throw an exception. If implementsComparable is false, this method does neither.

Ceri 08/10/04 05:07:56 PM EDT

Sorry, formatting seems to have been stripped from my previous message.

Ceri

Ceri 08/10/04 05:06:17 PM EDT

The compare method needs to handle primitive types separately. All non-primitives that implement comparable can be easily grouped together into a single if block (to replace the String handling section of Listing 3):

Class[] interfaces = method.getReturnType().getInterfaces();
boolean implementsComparable = false;
for (int i = 0; i < interfaces.length; i++) {
if (interfaces[i].getName().equals("java.lang.Comparable")) {
implementsComparable = true;
break;
}
}
if (implementsComparable) {
Comparable f1 = (Comparable) invoke(method, o1);
method = getMethod(o2);
Comparable f2 = (Comparable) invoke(method, 02);
if (f1 != null && f2 != null) {
return f1.compareTo(f2) * getSortOrder();
}
if (f1 == null && f2 != null) {
return LESS_THAN * getSortOrder();
}
if (f1 != null && f2 == null) {
return GREATER_THAN * getSortOrder();
}
if (f1 == null && f2 == null) {
return EQUAL * getSortOrder();
}
}

Mike 08/10/04 12:16:23 PM EDT

York the method "public int compare(Object o1, Object o2)" is long and makes the class look cluddered(like it needs to be refactored), especially if more fields where added requiring more test to be implemented in this method. Wouldn''t separate class implementation for each sorting type help with this, but on second thought this would lead to class proliferation. Okay in the future, would sometype of generics in 1.5.0 work here for the comparing class in addition to the usage of reflection to stream line this code.

York 08/09/04 01:22:26 PM EDT

Source code now available for download!

S Opoku-Boadu 08/09/04 03:26:33 AM EDT

Cannot locate Listings 2 - 5

S Opoku-Boadu 08/09/04 03:25:52 AM EDT

Cannot locate Listings 2 - 5

Trevor Leach 08/09/04 12:38:46 AM EDT

The listings are not in the print version either. Perhaps we''ll get emailed when they are found?

D Polansky 08/05/04 05:41:40 PM EDT

Where are listings 3, 4, and 5 referenced in the article?

@ThingsExpo Stories
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo 2016 in New York. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place June 6-8, 2017, at the Javits Center in New York City, New York, is co-located with 20th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry p...
In his keynote at @ThingsExpo, Chris Matthieu, Director of IoT Engineering at Citrix and co-founder and CTO of Octoblu, focused on building an IoT platform and company. He provided a behind-the-scenes look at Octoblu’s platform, business, and pivots along the way (including the Citrix acquisition of Octoblu).
Grape Up is a software company, specialized in cloud native application development and professional services related to Cloud Foundry PaaS. With five expert teams that operate in various sectors of the market across the USA and Europe, we work with a variety of customers from emerging startups to Fortune 1000 companies.
Financial Technology has become a topic of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 20th Cloud Expo at the Javits Center in New York, June 6-8, 2017, will find fresh new content in a new track called FinTech.
SYS-CON Events announced today that CollabNet, a global leader in enterprise software development, release automation and DevOps solutions, will be a Bronze Sponsor of SYS-CON's 20th International Cloud Expo®, taking place from June 6-8, 2017, at the Javits Center in New York City, NY. CollabNet offers a broad range of solutions with the mission of helping modern organizations deliver quality software at speed. The company’s latest innovation, the DevOps Lifecycle Manager (DLM), supports Value S...
SYS-CON Events announced today that Interoute, owner-operator of one of Europe's largest networks and a global cloud services platform, has been named “Bronze Sponsor” of SYS-CON's 20th Cloud Expo, which will take place on June 6-8, 2017 at the Javits Center in New York, New York. Interoute is the owner-operator of one of Europe's largest networks and a global cloud services platform which encompasses 12 data centers, 14 virtual data centers and 31 colocation centers, with connections to 195 add...
Multiple data types are pouring into IoT deployments. Data is coming in small packages as well as enormous files and data streams of many sizes. Widespread use of mobile devices adds to the total. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will look at the tools and environments that are being put to use in IoT deployments, as well as the team skills a modern enterprise IT shop needs to keep things running, get a handle on all this data, and deli...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound e...
@ThingsExpo has been named the Most Influential ‘Smart Cities - IIoT' Account and @BigDataExpo has been named fourteenth by Right Relevance (RR), which provides curated information and intelligence on approximately 50,000 topics. In addition, Right Relevance provides an Insights offering that combines the above Topics and Influencers information with real time conversations to provide actionable intelligence with visualizations to enable decision making. The Insights service is applicable to eve...
The age of Digital Disruption is evolving into the next era – Digital Cohesion, an age in which applications securely self-assemble and deliver predictive services that continuously adapt to user behavior. Information from devices, sensors and applications around us will drive services seamlessly across mobile and fixed devices/infrastructure. This evolution is happening now in software defined services and secure networking. Four key drivers – Performance, Economics, Interoperability and Trust ...
The 20th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held June 6-8, 2017, at the Javits Center in New York City, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Containers, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal ...
SYS-CON Events announced today that Grape Up will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct. 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Grape Up is a software company specializing in cloud native application development and professional services related to Cloud Foundry PaaS. With five expert teams that operate in various sectors of the market across the U.S. and Europe, Grape Up works with a variety of customers from emergi...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm.
With billions of sensors deployed worldwide, the amount of machine-generated data will soon exceed what our networks can handle. But consumers and businesses will expect seamless experiences and real-time responsiveness. What does this mean for IoT devices and the infrastructure that supports them? More of the data will need to be handled at - or closer to - the devices themselves.
SYS-CON Events announced today that T-Mobile will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. As America's Un-carrier, T-Mobile US, Inc., is redefining the way consumers and businesses buy wireless services through leading product and service innovation. The Company's advanced nationwide 4G LTE network delivers outstanding wireless experiences to 67.4 million customers who are unwilling to compromise on ...
@GonzalezCarmen has been ranked the Number One Influencer and @ThingsExpo has been named the Number One Brand in the “M2M 2016: Top 100 Influencers and Brands” by Analytic. Onalytica analyzed tweets over the last 6 months mentioning the keywords M2M OR “Machine to Machine.” They then identified the top 100 most influential brands and individuals leading the discussion on Twitter.
With major technology companies and startups seriously embracing Cloud strategies, now is the perfect time to attend @CloudExpo | @ThingsExpo, June 6-8, 2017, at the Javits Center in New York City, NY and October 31 - November 2, 2017, Santa Clara Convention Center, CA. Learn what is going on, contribute to the discussions, and ensure that your enterprise is on the right path to Digital Transformation.
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
Five years ago development was seen as a dead-end career, now it’s anything but – with an explosion in mobile and IoT initiatives increasing the demand for skilled engineers. But apart from having a ready supply of great coders, what constitutes true ‘DevOps Royalty’? It’ll be the ability to craft resilient architectures, supportability, security everywhere across the software lifecycle. In his keynote at @DevOpsSummit at 20th Cloud Expo, Jeffrey Scheaffer, GM and SVP, Continuous Delivery Busine...
New competitors, disruptive technologies, and growing expectations are pushing every business to both adopt and deliver new digital services. This ‘Digital Transformation’ demands rapid delivery and continuous iteration of new competitive services via multiple channels, which in turn demands new service delivery techniques – including DevOps. In this power panel at @DevOpsSummit 20th Cloud Expo, moderated by DevOps Conference Co-Chair Andi Mann, panelists will examine how DevOps helps to meet th...