Welcome!

Java Authors: Pat Romanski, PagerDuty Blog, Elizabeth White, Liz McMillan, Jayaram Krishnaswamy

Related Topics: Java

Java: Article

Java Basics: Introduction to Java Threads, Part 1

Lesson 8, Java Basics

A program can perform its actions either in a sequence (one after another) or in parallel. In a sequential mode, if a program needs to call two methods of a class, the second method is called after the first one completes. In other words, such programs have only one thread of execution. In some cases, when a second method does not depend on the results of the first one, you can substantially speed up the processing by executing these methods at the same time in a multi-threaded mode.

A good example of a program that creates multiple threads is your Web browser. You can browse the Internet while downloading some files - one program runs two threads of execution. If these two tasks would have run sequentially, the browser's screen would have been frozen until the download is complete. In case of a one-processor computer, each thread gets a slice of the processor's time. Since this happens pretty fast, a user can't notice small delays. If you run a multi-threaded program on a computer that has two or more processors, performance of such program can be increased dramatically.

Multi-threading is used in most of the graphical games: while one thread displays GUI components on the screen, the second thread calculates coordinates of the next image based on the player's move.

A Sample Program Without Threads

When I teach classes, I usually start with some theory and then show sample programs to illustrate the subject, but in this case I believe it's better to start by writing two very simple programs to give you a better feeling of why threads are needed. I'll give you some explanations as we go.

 Each of these sample programs will use Swing components - a button and a text field. When a user hits the button Kill Time, the program starts a loop that increments a counter thirty thousand times. The current value of the variable-counter will be displayed on the title bar of the window. The class NoThreadsSample has only one thread of execution and you won't be able to type anything in the text field until the loop is done. This loop exclusively takes all processor's time, that's why the window is locked.

For those of you who did not have a chance to create GUI screens with Swing, let me just say that the constructor of the class NoThreadsSample creates a button and a text field and registers this class with so called ActionListener that will process button clicks. Whenever a user clicks on the button, JVM will call the method actionPerformed(), and we start our kill-time-loop there. This class is inherited from JFrame that comes with Swing and the ActionListener interface is needed for this program to process clicks on the button.


import javax.swing.*;
import java.awt.GridLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class NoThreadsSample extends JFrame implements ActionListener{
  // Constructor
  NoThreadsSample(){
  // Create a frame with a button and a text field
	GridLayout gl =new GridLayout(2,1);
	this.getContentPane().setLayout(gl);
	JButton myButton = new JButton("Kill Time");
	myButton.addActionListener(this);
	this.getContentPane().add(myButton);
	this.getContentPane().add(new JTextField());
  }
  // Process button clicks
  public void actionPerformed(ActionEvent e){
  // Just  kill some time to show
  // that window controls are locked
    	for (int i=0; i<30000;i++){
    	  this.setTitle("i="+i);
    	}
    }

  public static void main(String[] args) {
    // Create an instance of the frame
    NoThreadsSample myWindow = new NoThreadsSample();
    // Ensure that the window can be closed
    // by pressing a little cross in its corner
    myWindow.setDefaultCloseOperation(
	  WindowConstants.EXIT_ON_CLOSE);

    // Set the frame's size - top left corner
    // coordinates, width and height
	myWindow.setBounds(0,0,150, 100);
    //Make the window visible
    myWindow.setVisible(true);
  }
}

Compile and run this class and see for yourself that the window is locked for some time and that you can't use the text field until the loop is over.

Re-writing our Sample Program With Threads

The next version of this little window will create and start a separate thread for the loop, and the main window's thread will allow you to type in the text field.

In Java, you can create a thread using one of the following ways:

1.  Create an instance of the Java class Thread and pass to this instance an object that implements Runnable interface. For example, if a class SomeGameProcessor implements Runnable interface the code may look as follows:


SomeGameProcessor sgp = new SomeGameProcessor();
Thread worker = new Thread(sgp);

The Runnable interface requires that a class has to implement the code that must be running as a separate thread in the method run(). But to start the thread, you have to call the Thread's method start(), that will actually call your method run(). I agree, it's a bit confusing, but this is how you start a thread:


worker.start();

2.  Create a subclass of the class Thread and implement the method run() there. To start the thread call the method start().


public class MyThread extends Thread{

  public static void main(String[] args) {
	MyThread worker = new MyThread();
	worker.start();
  }
  public void run(){
    // your code goes here
  }
}

In my class ThreadsSample I'll create a thread using the first method because this class already extends JFrame, and you can't inherit a Java class from more than one parent.


import javax.swing.*;
import java.awt.GridLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class ThreadsSample extends JFrame
             implements ActionListener, Runnable{

  // Constructor
  ThreadsSample(){
   // Create a frame with a button and a text field
	GridLayout gl =new GridLayout(2,1);
	this.getContentPane().setLayout(gl);
	JButton myButton = new JButton("Kill Time");
	myButton.addActionListener(this);
	this.getContentPane().add(myButton);
	this.getContentPane().add(new JTextField());
  }

  public void actionPerformed(ActionEvent e){
  // Create a thread and execute the kill-time-code
  // without blockiing the window
    Thread worker = new Thread(this);
    worker.start();  // this calls the method run()
  }

  public void run(){
  // Just  kill some time to show that
  // window controls are NOT locked
	for (int i=0; i<30000;i++){
  	  this.setTitle("i="+i);
	}
   }

  public static void main(String[] args) {

	ThreadsSample myWindow = new ThreadsSample();
  // Ensure that the window can be closed
  // by pressing a little cross in the corner
  	myWindow.setDefaultCloseOperation(
	       WindowConstants.EXIT_ON_CLOSE);

  // Set the frame's size and make it visible
	myWindow.setBounds(0,0,150, 100);
	myWindow.setVisible(true);
  }
}

The class ThreadsSample starts a new thread in the method actionPerformed(), which is called whenever you click on the button Kill Time. After this, the thread with a loop and the main thread take turns in getting slices of the processor's time. Now you can type in the text field (the main thread), while the other thread runs the loop! Try it out.

After calling the method worker.start(), our program does not wait until the code in the method run() completes, but runs this code in a separate thread of execution. Since the GUI part runs in a different thread, the screen is not locked.

Note - There are special requirements for using Java threads in Swing, and you can find more here: http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html

Sleeping Threads

One of the ways for a tread to step aside and let the processor continue working with other threads is by using the method sleep()of the class Thread. This method takes one parameter that specifies (in milliseconds) how log the thread has to sleep. For example, if your program needs to refresh the screen with stock quotes every five seconds (see an example of how to get stock quotes in the lesson Reading Data from the Internet), you can do it like this:

  public void run(){

  try{
   while (true)
     // call the code that gets the price quote here
     // and display the current price of the stok(s)
     sleep (5000);  // sleep for 5 second
   }
  }catch(InterruptedException e ){
    System.out.println(Thread.currentThread().getName()
	  + e.toString());
  }
}   

In our endless loop this thread will "wake up" every five seconds, execute the code that gets the stock quote and will go to sleep again for another five seconds. The method sleep() may throw the InterruptedException, that's why we handle it in a try/catch block. A thread can be interrupted not only because of an error condition, but a program can try to interrupt a running thread by calling its method interrupt:


worker.interrupt();

How to Stop a Thread

Ideally, a thread should die after completing the code in its method run(). But what if you'd like to stop it earlier? The class Thread has a method stop() that was deprecated a long time ago, because in some cases it was making programs unstable (the methods suspend() and resume() were deprecated as well). I'm not planning to elaborate on this topic here, but you can read about this at the following Web page : java.sun.com/j2se/1.5.0/docs/guide/misc/ threadPrimitiveDeprecation.html.

So, we need to find some other way to stop unwanted threads.

The class ThreadStopSample is a slightly modified version of the class ThreadsSample, and it will show you how to stop a thread by declaring a flag variable and setting it to true when the thread has to be killed. We declare a boolean variable stopThreadFlag and the GUI button will work as a toggle to start or stop the thread. The method actionPerformed(), is called whenever the user clicks on the button, and we check there if the thread is currently running ( the method Thread.isAlive() returns true), and set the stopThreadFlag to true in this case. On the other hand, the code in the method run() is enclosed in the loop while (!stopThreadFlag). As soon as the variable stopThreadFlag is set to true, the loop (read Thread) will end.


import javax.swing.*;
import java.awt.GridLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class ThreadStopSample extends JFrame
              implements ActionListener, Runnable{

   private volatile boolean stopThreadFlag = false;
   Thread worker=null ;

    // Constructor
   ThreadStopSample(){
	// Create a frame with a button and a text field
	GridLayout gl =new GridLayout(2,1);
	this.getContentPane().setLayout(gl);
	JButton myButton = new JButton("Start/Stop Thread");
	myButton.addActionListener(this);
	this.getContentPane().add(myButton);
	this.getContentPane().add(new JTextField());
   }

    public void actionPerformed(ActionEvent e){
    	// If the thread is running, turn the flag to stop it.
    	// Otherwise, start the thread
        if (worker!=null && worker.isAlive()){
        	setStopThreadFlag(true);
        }else{
        	setStopThreadFlag(false);
        	worker = new Thread(this);
        	worker.start();  // this calls the method run()
        }

    }

    public void run(){
       // Run the thread until the stop flag is on
       int i=0;
       while (!stopThreadFlag){
		this.setTitle("i="+i);
		i++;
       }
    }

     public void setStopThreadFlag(boolean flag)
    {
    	 stopThreadFlag = flag;
    }

    public static void main(String[] args) {
	// Create an instance of the frame
	ThreadStopSample myWindow = new ThreadStopSample();
	// Ensure that the window can be closed
	// by pressing a little cross in the corner
	myWindow.setDefaultCloseOperation(
	         WindowConstants.EXIT_ON_CLOSE);

	// Set the frame's size ang make it visible
	myWindow.setBounds(0,0,150, 100);
	myWindow.setVisible(true);
   }

}

Please note that the variable stopThreadFlag is declared as volatile. This is done to make sure that if the value of this variable is changed by one of the threads in a multi-threaded application, the running thread will see its latest value. This basically forces JVM to always refresh the local copies of such variables, i.e. in a CPU register

Our method run() just increments the counter, but in real-world applications a running thread may use some other resources, for example work with files, databases, or maintain connections to remote computers. When you stop such thread, make sure that it closes all opened resources - the finally clause of the try block is the right place to do this (see the lessons on working with streams).

Threads are used in most of the Java applications one way or the other. Either your program explicitly creates and handles threads, or an application server where your program may be deployed can create multiple threads without any additional programming required on your part. For example, hundreds of users may work at the same time with an online store that may be implemented as a Web application using Java Servlets. Each user's request will be processed by the same servlet, but the servlet container will create a separate thread of execution for each of these requests.

In this lesson you've learned the basics of threads. In a follow up article I'll show you how to create a more useful multi-threaded program than our kill-time sample.

More Stories By Yakov Fain

Yakov Fain is a co-founder of two software companies: Farata Systems and SuranceBay. He authored several technical books and lots of articles on software development. Yakov is Java Champion (https://java-champions.java.net). He leads leads Princeton Java Users Group. Two of Yakov's books will go in print this year: "Enterprise Web Development" (O'Reilly) and "Java For Kids" (No Starch Press).

Comments (7) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Simon 08/27/04 01:55:16 PM EDT

Jeff, the article states:
"The class NoThreadsSample has only one thread of execution and you won''t be able to type anything in the text field until the loop is done. This loop exclusively takes all processor''s time, that''s why the window is locked"

What happens if I have a 2 CPU box ? One CPU will be 100%, but the other will be 0%, plenty of resource to type in the text field.
The fact that you cannot type in the text field is absolutely not related to the fact that the "loop exclusively takes all processor''s time", but more to Swing''s architecture.
For further info, read the links I gave. They will explain the Swing "freeze" problem (the author refer to it as "the window is locked"), and the Swing architecture as well.

Jeff 08/27/04 01:41:24 PM EDT

Simon, you stated:

"First of all, the single thread rule of Swing is violated (setTitle() is called from outside the event dispatch thread). This is a gross mistake, especially when there is no explanation on why it has been done. Second, it is said that the reason why it is not possible to type in the textfield is that because the CPU is 100% busy. This is clearly false, and shows bad understanding of how Swing works."

Can you please explain your answers here? I''m a noob so saying something is "clearly false" without a "why" doesn''t help me. Thanks!

Simon 08/27/04 09:21:34 AM EDT

Read again - carefully this time - the article you mention, and you''ll see that your example *does* violate the single thread rule.

Also, I suggest you to read the second and third continuations of the same article.
For interested readers, since those resources are not mentioned by your article, here are the links:
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads2.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads3.html

Another good reference for Swing threading is this:
http://foxtrot.sourceforge.net/
especially here:
http://foxtrot.sourceforge.net/docs/toc.php

About the catch 22 situation, I would say you shoot in your foot, since 99% of thread tutorials out there do not use Swing as a first thread example, exactly because it requires too much background. Noone forced you to use a wrong example, to talk about wrong problems (the 100% CPU thing) and to suggest wrong solutions for them.

Once more, not good.

It''s just unfortunate that only few readers, after reading the article, take the time to read the comments.

Yakov 08/27/04 06:50:01 AM EDT

1. Calling setTitle() from the actionPerformed is fine and does not violate Swing''s single thread rule because actionPerformed() method is automatically invoked in the dispath-thread (see http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html)

2. I agree that calling another thread from the actionPerformed() should have been done using invokeLater(), but it''s a catch 22 situation: I can''t explain this without explaining thread basics first. Probably I should have mention that Swing has its special way of working with threads.
But again, I just try to explain one Java feature at a time...

Simon 08/27/04 04:36:23 AM EDT

Hi,
while I understand this is a simple example and an introductory article on threads, I am surprised by the errors it contains.
First of all, the single thread rule of Swing is violated (setTitle() is called from outside the event dispatch thread). This is a gross mistake, especially when there is no explanation on why it has been done.
Second, it is said that the reason why it is not possible to type in the textfield is that because the CPU is 100% busy. This is clearly false, and shows bad understanding of how Swing works. Furthermore, it is proposed as a solution to move the code in another thread, which is even worse (see previous point).
Third, it is possible to start more than one worker but the example does not seem to handle this situation.
Fourth, as already noted by Marc, catching an InterruptedException without re-interrupting the current thread is bad practice.

I think stating right things from the beginning, especially if the goal of the article is to be an introduction to threads for people that don''t know them, is a better approach.
Correcting things lately will always be too late, and when people will violate Swing''s single thread rule as a normal coding style, they will always have the justification that they read an article that did so. Not good.

Yakov 08/25/04 04:44:09 PM EDT

Marc,

This is a just a first light intro to threads and my sample code is written properly. At the end of the article I''ve also mentioned that you may need to close all io resources when killing a thread.

Your suggestion with interrupt() may not always work with threads that have opened streams. It''s recommended to stop such threads by simple closing these streams, connections, etc.

Let''s keep things simple for now :)

Marc 08/25/04 03:48:02 PM EDT

If your while loop launches more threads, or does blocking IO operations, the main thread (with the invariant while (!stopThreadFlag)) will end but you still have open resouces and other threads that may still be running.

A better (albeit not as elegant) mechanism to use would be the interrupt() method.

Here is a rewritten version using it. I''m sure this comment box will screw up formatting.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ThreadStopSample extends JFrame implements ActionListener, Runnable {

Thread worker = null;

// Constructor
ThreadStopSample() {
// Create a frame with a button and a text field
GridLayout gl = new GridLayout(2, 1);
this.getContentPane().setLayout(gl);
JButton myButton = new JButton("Start/Stop Thread");
myButton.addActionListener(this);
this.getContentPane().add(myButton);
this.getContentPane().add(new JTextField());
}

public void actionPerformed(ActionEvent e) {
if (worker != null && worker.isAlive()) {
worker.interrupt();
} else {
worker = new Thread(this);
worker.start();
}
}

public void run() {
int i = 0;
while (true) {
try {
this.setTitle("i=" + i);
i++;
Thread.sleep(1);
} catch (InterruptedException ie) {
Thread.currentThread().interrupt();
break;
}
}
}

public static void main(String[] args) {
ThreadStopSample myWindow = new ThreadStopSample();
myWindow.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
myWindow.setBounds(0, 0, 150, 100);
myWindow.setVisible(true);
}

}

@ThingsExpo Stories
“The age of the Internet of Things is upon us,” stated Thomas Svensson, senior vice-president and general manager EMEA, ThingWorx, “and working with forward-thinking companies, such as Elisa, enables us to deploy our leading technology so that customers can profit from complete, end-to-end solutions.” ThingWorx, a PTC® (Nasdaq: PTC) business and Internet of Things (IoT) platform provider, announced on Monday that Elisa, Finnish provider of mobile and fixed broadband subscriptions, will deploy ThingWorx® platform technology to enable a new Elisa IoT service in Finland and Estonia.
Advanced Persistent Threats (APTs) are increasing at an unprecedented rate. The threat landscape of today is drastically different than just a few years ago. Attacks are much more organized and sophisticated. They are harder to detect and even harder to anticipate. In the foreseeable future it's going to get a whole lot harder. Everything you know today will change. Keeping up with this changing landscape is already a daunting task. Your organization needs to use the latest tools, methods and expertise to guard against those threats. But will that be enough? In the foreseeable future attacks w...
As enterprises move to all-IP networks and cloud-based applications, communications service providers (CSPs) – facing increased competition from over-the-top providers delivering content via the Internet and independently of CSPs – must be able to offer seamless cloud-based communication and collaboration solutions that can scale for small, midsize, and large enterprises, as well as public sector organizations, in order to keep and grow market share. The latest version of Oracle Communications Unified Communications Suite gives CSPs the capability to do just that. In addition, its integration ...
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, shared some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, a...
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...

ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's platform-as-a-service. The new platform enables developers to build ap...

We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Disruptive macro trends in technology are impacting and dramatically changing the "art of the possible" relative to supply chain management practices through the innovative use of IoT, cloud, machine learning and Big Data to enable connected ecosystems of engagement. Enterprise informatics can now move beyond point solutions that merely monitor the past and implement integrated enterprise fabrics that enable end-to-end supply chain visibility to improve customer service delivery and optimize supplier management. Learn about enterprise architecture strategies for designing connected systems tha...
SYS-CON Events announced today that CodeFutures, a leading supplier of database performance tools, has been named a “Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. CodeFutures is an independent software vendor focused on providing tools that deliver database performance tools that increase productivity during database development and increase database performance and scalability during production.
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
"For over 25 years we have been working with a lot of enterprise customers and we have seen how companies create applications. And now that we have moved to cloud computing, mobile, social and the Internet of Things, we see that the market needs a new way of creating applications," stated Jesse Shiah, CEO, President and Co-Founder of AgilePoint Inc., in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, addressed the big issues involving these technologies and, more important, the results they will achieve. Rodney Rogers, chairman and CEO of Virtustream; Brendan O'Brien, co-founder of Aria Systems, Bart Copeland, president and CEO of ActiveState Software; Jim Cowie, chief scientist at Dyn; Dave Wagstaff, VP and chief architect at BSQUARE Corporation; Seth Proctor, CTO of NuoDB, Inc.; and Andris Gailitis, C...
Recurring revenue models are great for driving new business in every market sector, but they are complex and need to be effectively managed to maximize profits. How you handle the range of options for pricing, co-terming and proration will ultimately determine the fate of your bottom line. In his session at 15th Cloud Expo, Brendan O'Brien, Co-founder at Aria Systems, session examined: How time impacts recurring revenue How to effectively handle customer plan changes The range of pricing and packaging options to consider
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
Code Halos - aka "digital fingerprints" - are the key organizing principle to understand a) how dumb things become smart and b) how to monetize this dynamic. In his session at @ThingsExpo, Robert Brown, AVP, Center for the Future of Work at Cognizant Technology Solutions, outlined research, analysis and recommendations from his recently published book on this phenomena on the way leading edge organizations like GE and Disney are unlocking the Internet of Things opportunity and what steps your organization should be taking to position itself for the next platform of digital competition.
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
SYS-CON Media announced that Splunk, a provider of the leading software platform for real-time Operational Intelligence, has launched an ad campaign on Big Data Journal. Splunk software and cloud services enable organizations to search, monitor, analyze and visualize machine-generated big data coming from websites, applications, servers, networks, sensors and mobile devices. The ads focus on delivering ROI - how improved uptime delivered $6M in annual ROI, improving customer operations by mining large volumes of unstructured data, and how data tracking delivers uptime when it matters most.
SYS-CON Events announced today that ActiveState, the leading independent Cloud Foundry and Docker-based PaaS provider, has been named “Silver Sponsor” of SYS-CON's DevOps Summit New York, which will take place June 9-11, 2015, at the Javits Center in New York City, NY. ActiveState believes that enterprises gain a competitive advantage when they are able to quickly create, deploy and efficiently manage software solutions that immediately create business value, but they face many challenges that prevent them from doing so. The Company is uniquely positioned to help address these challenges thro...
SYS-CON Media announced that Cisco, a worldwide leader in IT that helps companies seize the opportunities of tomorrow, has launched a new ad campaign in Cloud Computing Journal. The ad campaign, a webcast titled 'Is Your Data Center Ready for the Application Economy?', focuses on the latest data center networking technologies, including SDN or ACI, and how customers are using SDN and ACI in their organizations to achieve business agility. The Cisco webcast is available on-demand.