Welcome!

Java Authors: Pat Romanski, Carmen Gonzalez, Yeshim Deniz, Liz McMillan, Yakov Fain

Related Topics: Java

Java: Article

Java Basics: Introduction to Java Threads, Part 1

Lesson 8, Java Basics

A program can perform its actions either in a sequence (one after another) or in parallel. In a sequential mode, if a program needs to call two methods of a class, the second method is called after the first one completes. In other words, such programs have only one thread of execution. In some cases, when a second method does not depend on the results of the first one, you can substantially speed up the processing by executing these methods at the same time in a multi-threaded mode.

A good example of a program that creates multiple threads is your Web browser. You can browse the Internet while downloading some files - one program runs two threads of execution. If these two tasks would have run sequentially, the browser's screen would have been frozen until the download is complete. In case of a one-processor computer, each thread gets a slice of the processor's time. Since this happens pretty fast, a user can't notice small delays. If you run a multi-threaded program on a computer that has two or more processors, performance of such program can be increased dramatically.

Multi-threading is used in most of the graphical games: while one thread displays GUI components on the screen, the second thread calculates coordinates of the next image based on the player's move.

A Sample Program Without Threads

When I teach classes, I usually start with some theory and then show sample programs to illustrate the subject, but in this case I believe it's better to start by writing two very simple programs to give you a better feeling of why threads are needed. I'll give you some explanations as we go.

 Each of these sample programs will use Swing components - a button and a text field. When a user hits the button Kill Time, the program starts a loop that increments a counter thirty thousand times. The current value of the variable-counter will be displayed on the title bar of the window. The class NoThreadsSample has only one thread of execution and you won't be able to type anything in the text field until the loop is done. This loop exclusively takes all processor's time, that's why the window is locked.

For those of you who did not have a chance to create GUI screens with Swing, let me just say that the constructor of the class NoThreadsSample creates a button and a text field and registers this class with so called ActionListener that will process button clicks. Whenever a user clicks on the button, JVM will call the method actionPerformed(), and we start our kill-time-loop there. This class is inherited from JFrame that comes with Swing and the ActionListener interface is needed for this program to process clicks on the button.


import javax.swing.*;
import java.awt.GridLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class NoThreadsSample extends JFrame implements ActionListener{
  // Constructor
  NoThreadsSample(){
  // Create a frame with a button and a text field
	GridLayout gl =new GridLayout(2,1);
	this.getContentPane().setLayout(gl);
	JButton myButton = new JButton("Kill Time");
	myButton.addActionListener(this);
	this.getContentPane().add(myButton);
	this.getContentPane().add(new JTextField());
  }
  // Process button clicks
  public void actionPerformed(ActionEvent e){
  // Just  kill some time to show
  // that window controls are locked
    	for (int i=0; i<30000;i++){
    	  this.setTitle("i="+i);
    	}
    }

  public static void main(String[] args) {
    // Create an instance of the frame
    NoThreadsSample myWindow = new NoThreadsSample();
    // Ensure that the window can be closed
    // by pressing a little cross in its corner
    myWindow.setDefaultCloseOperation(
	  WindowConstants.EXIT_ON_CLOSE);

    // Set the frame's size - top left corner
    // coordinates, width and height
	myWindow.setBounds(0,0,150, 100);
    //Make the window visible
    myWindow.setVisible(true);
  }
}

Compile and run this class and see for yourself that the window is locked for some time and that you can't use the text field until the loop is over.

Re-writing our Sample Program With Threads

The next version of this little window will create and start a separate thread for the loop, and the main window's thread will allow you to type in the text field.

In Java, you can create a thread using one of the following ways:

1.  Create an instance of the Java class Thread and pass to this instance an object that implements Runnable interface. For example, if a class SomeGameProcessor implements Runnable interface the code may look as follows:


SomeGameProcessor sgp = new SomeGameProcessor();
Thread worker = new Thread(sgp);

The Runnable interface requires that a class has to implement the code that must be running as a separate thread in the method run(). But to start the thread, you have to call the Thread's method start(), that will actually call your method run(). I agree, it's a bit confusing, but this is how you start a thread:


worker.start();

2.  Create a subclass of the class Thread and implement the method run() there. To start the thread call the method start().


public class MyThread extends Thread{

  public static void main(String[] args) {
	MyThread worker = new MyThread();
	worker.start();
  }
  public void run(){
    // your code goes here
  }
}

In my class ThreadsSample I'll create a thread using the first method because this class already extends JFrame, and you can't inherit a Java class from more than one parent.


import javax.swing.*;
import java.awt.GridLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class ThreadsSample extends JFrame
             implements ActionListener, Runnable{

  // Constructor
  ThreadsSample(){
   // Create a frame with a button and a text field
	GridLayout gl =new GridLayout(2,1);
	this.getContentPane().setLayout(gl);
	JButton myButton = new JButton("Kill Time");
	myButton.addActionListener(this);
	this.getContentPane().add(myButton);
	this.getContentPane().add(new JTextField());
  }

  public void actionPerformed(ActionEvent e){
  // Create a thread and execute the kill-time-code
  // without blockiing the window
    Thread worker = new Thread(this);
    worker.start();  // this calls the method run()
  }

  public void run(){
  // Just  kill some time to show that
  // window controls are NOT locked
	for (int i=0; i<30000;i++){
  	  this.setTitle("i="+i);
	}
   }

  public static void main(String[] args) {

	ThreadsSample myWindow = new ThreadsSample();
  // Ensure that the window can be closed
  // by pressing a little cross in the corner
  	myWindow.setDefaultCloseOperation(
	       WindowConstants.EXIT_ON_CLOSE);

  // Set the frame's size and make it visible
	myWindow.setBounds(0,0,150, 100);
	myWindow.setVisible(true);
  }
}

The class ThreadsSample starts a new thread in the method actionPerformed(), which is called whenever you click on the button Kill Time. After this, the thread with a loop and the main thread take turns in getting slices of the processor's time. Now you can type in the text field (the main thread), while the other thread runs the loop! Try it out.

After calling the method worker.start(), our program does not wait until the code in the method run() completes, but runs this code in a separate thread of execution. Since the GUI part runs in a different thread, the screen is not locked.

Note - There are special requirements for using Java threads in Swing, and you can find more here: http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html

Sleeping Threads

One of the ways for a tread to step aside and let the processor continue working with other threads is by using the method sleep()of the class Thread. This method takes one parameter that specifies (in milliseconds) how log the thread has to sleep. For example, if your program needs to refresh the screen with stock quotes every five seconds (see an example of how to get stock quotes in the lesson Reading Data from the Internet), you can do it like this:

  public void run(){

  try{
   while (true)
     // call the code that gets the price quote here
     // and display the current price of the stok(s)
     sleep (5000);  // sleep for 5 second
   }
  }catch(InterruptedException e ){
    System.out.println(Thread.currentThread().getName()
	  + e.toString());
  }
}   

In our endless loop this thread will "wake up" every five seconds, execute the code that gets the stock quote and will go to sleep again for another five seconds. The method sleep() may throw the InterruptedException, that's why we handle it in a try/catch block. A thread can be interrupted not only because of an error condition, but a program can try to interrupt a running thread by calling its method interrupt:


worker.interrupt();

How to Stop a Thread

Ideally, a thread should die after completing the code in its method run(). But what if you'd like to stop it earlier? The class Thread has a method stop() that was deprecated a long time ago, because in some cases it was making programs unstable (the methods suspend() and resume() were deprecated as well). I'm not planning to elaborate on this topic here, but you can read about this at the following Web page : java.sun.com/j2se/1.5.0/docs/guide/misc/ threadPrimitiveDeprecation.html.

So, we need to find some other way to stop unwanted threads.

The class ThreadStopSample is a slightly modified version of the class ThreadsSample, and it will show you how to stop a thread by declaring a flag variable and setting it to true when the thread has to be killed. We declare a boolean variable stopThreadFlag and the GUI button will work as a toggle to start or stop the thread. The method actionPerformed(), is called whenever the user clicks on the button, and we check there if the thread is currently running ( the method Thread.isAlive() returns true), and set the stopThreadFlag to true in this case. On the other hand, the code in the method run() is enclosed in the loop while (!stopThreadFlag). As soon as the variable stopThreadFlag is set to true, the loop (read Thread) will end.


import javax.swing.*;
import java.awt.GridLayout;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

public class ThreadStopSample extends JFrame
              implements ActionListener, Runnable{

   private volatile boolean stopThreadFlag = false;
   Thread worker=null ;

    // Constructor
   ThreadStopSample(){
	// Create a frame with a button and a text field
	GridLayout gl =new GridLayout(2,1);
	this.getContentPane().setLayout(gl);
	JButton myButton = new JButton("Start/Stop Thread");
	myButton.addActionListener(this);
	this.getContentPane().add(myButton);
	this.getContentPane().add(new JTextField());
   }

    public void actionPerformed(ActionEvent e){
    	// If the thread is running, turn the flag to stop it.
    	// Otherwise, start the thread
        if (worker!=null && worker.isAlive()){
        	setStopThreadFlag(true);
        }else{
        	setStopThreadFlag(false);
        	worker = new Thread(this);
        	worker.start();  // this calls the method run()
        }

    }

    public void run(){
       // Run the thread until the stop flag is on
       int i=0;
       while (!stopThreadFlag){
		this.setTitle("i="+i);
		i++;
       }
    }

     public void setStopThreadFlag(boolean flag)
    {
    	 stopThreadFlag = flag;
    }

    public static void main(String[] args) {
	// Create an instance of the frame
	ThreadStopSample myWindow = new ThreadStopSample();
	// Ensure that the window can be closed
	// by pressing a little cross in the corner
	myWindow.setDefaultCloseOperation(
	         WindowConstants.EXIT_ON_CLOSE);

	// Set the frame's size ang make it visible
	myWindow.setBounds(0,0,150, 100);
	myWindow.setVisible(true);
   }

}

Please note that the variable stopThreadFlag is declared as volatile. This is done to make sure that if the value of this variable is changed by one of the threads in a multi-threaded application, the running thread will see its latest value. This basically forces JVM to always refresh the local copies of such variables, i.e. in a CPU register

Our method run() just increments the counter, but in real-world applications a running thread may use some other resources, for example work with files, databases, or maintain connections to remote computers. When you stop such thread, make sure that it closes all opened resources - the finally clause of the try block is the right place to do this (see the lessons on working with streams).

Threads are used in most of the Java applications one way or the other. Either your program explicitly creates and handles threads, or an application server where your program may be deployed can create multiple threads without any additional programming required on your part. For example, hundreds of users may work at the same time with an online store that may be implemented as a Web application using Java Servlets. Each user's request will be processed by the same servlet, but the servlet container will create a separate thread of execution for each of these requests.

In this lesson you've learned the basics of threads. In a follow up article I'll show you how to create a more useful multi-threaded program than our kill-time sample.

More Stories By Yakov Fain

Yakov Fain is a co-founder of two software companies: Farata Systems and SuranceBay. He authored several technical books and lots of articles on software development. Yakov is Java Champion (https://java-champions.java.net). He leads leads Princeton Java Users Group. Two of Yakov's books will go in print this year: "Enterprise Web Development" (O'Reilly) and "Java For Kids" (No Starch Press).

Comments (7) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Simon 08/27/04 01:55:16 PM EDT

Jeff, the article states:
"The class NoThreadsSample has only one thread of execution and you won''t be able to type anything in the text field until the loop is done. This loop exclusively takes all processor''s time, that''s why the window is locked"

What happens if I have a 2 CPU box ? One CPU will be 100%, but the other will be 0%, plenty of resource to type in the text field.
The fact that you cannot type in the text field is absolutely not related to the fact that the "loop exclusively takes all processor''s time", but more to Swing''s architecture.
For further info, read the links I gave. They will explain the Swing "freeze" problem (the author refer to it as "the window is locked"), and the Swing architecture as well.

Jeff 08/27/04 01:41:24 PM EDT

Simon, you stated:

"First of all, the single thread rule of Swing is violated (setTitle() is called from outside the event dispatch thread). This is a gross mistake, especially when there is no explanation on why it has been done. Second, it is said that the reason why it is not possible to type in the textfield is that because the CPU is 100% busy. This is clearly false, and shows bad understanding of how Swing works."

Can you please explain your answers here? I''m a noob so saying something is "clearly false" without a "why" doesn''t help me. Thanks!

Simon 08/27/04 09:21:34 AM EDT

Read again - carefully this time - the article you mention, and you''ll see that your example *does* violate the single thread rule.

Also, I suggest you to read the second and third continuations of the same article.
For interested readers, since those resources are not mentioned by your article, here are the links:
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads2.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads3.html

Another good reference for Swing threading is this:
http://foxtrot.sourceforge.net/
especially here:
http://foxtrot.sourceforge.net/docs/toc.php

About the catch 22 situation, I would say you shoot in your foot, since 99% of thread tutorials out there do not use Swing as a first thread example, exactly because it requires too much background. Noone forced you to use a wrong example, to talk about wrong problems (the 100% CPU thing) and to suggest wrong solutions for them.

Once more, not good.

It''s just unfortunate that only few readers, after reading the article, take the time to read the comments.

Yakov 08/27/04 06:50:01 AM EDT

1. Calling setTitle() from the actionPerformed is fine and does not violate Swing''s single thread rule because actionPerformed() method is automatically invoked in the dispath-thread (see http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html)

2. I agree that calling another thread from the actionPerformed() should have been done using invokeLater(), but it''s a catch 22 situation: I can''t explain this without explaining thread basics first. Probably I should have mention that Swing has its special way of working with threads.
But again, I just try to explain one Java feature at a time...

Simon 08/27/04 04:36:23 AM EDT

Hi,
while I understand this is a simple example and an introductory article on threads, I am surprised by the errors it contains.
First of all, the single thread rule of Swing is violated (setTitle() is called from outside the event dispatch thread). This is a gross mistake, especially when there is no explanation on why it has been done.
Second, it is said that the reason why it is not possible to type in the textfield is that because the CPU is 100% busy. This is clearly false, and shows bad understanding of how Swing works. Furthermore, it is proposed as a solution to move the code in another thread, which is even worse (see previous point).
Third, it is possible to start more than one worker but the example does not seem to handle this situation.
Fourth, as already noted by Marc, catching an InterruptedException without re-interrupting the current thread is bad practice.

I think stating right things from the beginning, especially if the goal of the article is to be an introduction to threads for people that don''t know them, is a better approach.
Correcting things lately will always be too late, and when people will violate Swing''s single thread rule as a normal coding style, they will always have the justification that they read an article that did so. Not good.

Yakov 08/25/04 04:44:09 PM EDT

Marc,

This is a just a first light intro to threads and my sample code is written properly. At the end of the article I''ve also mentioned that you may need to close all io resources when killing a thread.

Your suggestion with interrupt() may not always work with threads that have opened streams. It''s recommended to stop such threads by simple closing these streams, connections, etc.

Let''s keep things simple for now :)

Marc 08/25/04 03:48:02 PM EDT

If your while loop launches more threads, or does blocking IO operations, the main thread (with the invariant while (!stopThreadFlag)) will end but you still have open resouces and other threads that may still be running.

A better (albeit not as elegant) mechanism to use would be the interrupt() method.

Here is a rewritten version using it. I''m sure this comment box will screw up formatting.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ThreadStopSample extends JFrame implements ActionListener, Runnable {

Thread worker = null;

// Constructor
ThreadStopSample() {
// Create a frame with a button and a text field
GridLayout gl = new GridLayout(2, 1);
this.getContentPane().setLayout(gl);
JButton myButton = new JButton("Start/Stop Thread");
myButton.addActionListener(this);
this.getContentPane().add(myButton);
this.getContentPane().add(new JTextField());
}

public void actionPerformed(ActionEvent e) {
if (worker != null && worker.isAlive()) {
worker.interrupt();
} else {
worker = new Thread(this);
worker.start();
}
}

public void run() {
int i = 0;
while (true) {
try {
this.setTitle("i=" + i);
i++;
Thread.sleep(1);
} catch (InterruptedException ie) {
Thread.currentThread().interrupt();
break;
}
}
}

public static void main(String[] args) {
ThreadStopSample myWindow = new ThreadStopSample();
myWindow.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
myWindow.setBounds(0, 0, 150, 100);
myWindow.setVisible(true);
}

}

@ThingsExpo Stories
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.

SUNNYVALE, Calif., Oct. 20, 2014 /PRNewswire/ -- Spansion Inc. (NYSE: CODE), a global leader in embedded systems, today added 96 new products to the Spansion® FM4 Family of flexible microcontrollers (MCUs). Based on the ARM® Cortex®-M4F core, the new MCUs boast a 200 MHz operating frequency and support a diverse set of on-chip peripherals for enhanced human machine interfaces (HMIs) and machine-to-machine (M2M) communications. The rich set of periphera...

SYS-CON Events announced today that Aria Systems, the recurring revenue expert, has been named "Bronze Sponsor" of SYS-CON's 15th International Cloud Expo®, which will take place on November 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Aria Systems helps leading businesses connect their customers with the products and services they love. Industry leaders like Pitney Bowes, Experian, AAA NCNU, VMware, HootSuite and many others choose Aria to power their recurring revenue business and deliver exceptional experiences to their customers.
The Internet of Things (IoT) is making everything it touches smarter – smart devices, smart cars and smart cities. And lucky us, we’re just beginning to reap the benefits as we work toward a networked society. However, this technology-driven innovation is impacting more than just individuals. The IoT has an environmental impact as well, which brings us to the theme of this month’s #IoTuesday Twitter chat. The ability to remove inefficiencies through connected objects is driving change throughout every sector, including waste management. BigBelly Solar, located just outside of Boston, is trans...
SYS-CON Events announced today that Matrix.org has been named “Silver Sponsor” of Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Matrix is an ambitious new open standard for open, distributed, real-time communication over IP. It defines a new approach for interoperable Instant Messaging and VoIP based on pragmatic HTTP APIs and WebRTC, and provides open source reference implementations to showcase and bootstrap the new standard. Our focus is on simplicity, security, and supporting the fullest feature set.
Predicted by Gartner to add $1.9 trillion to the global economy by 2020, the Internet of Everything (IoE) is based on the idea that devices, systems and services will connect in simple, transparent ways, enabling seamless interactions among devices across brands and sectors. As this vision unfolds, it is clear that no single company can accomplish the level of interoperability required to support the horizontal aspects of the IoE. The AllSeen Alliance, announced in December 2013, was formed with the goal to advance IoE adoption and innovation in the connected home, healthcare, education, aut...
SYS-CON Events announced today that Red Hat, the world's leading provider of open source solutions, will exhibit at Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Red Hat is the world's leading provider of open source software solutions, using a community-powered approach to reliable and high-performing cloud, Linux, middleware, storage and virtualization technologies. Red Hat also offers award-winning support, training, and consulting services. As the connective hub in a global network of enterprises, partners, a...
The only place to be June 9-11 is Cloud Expo & @ThingsExpo 2015 East at the Javits Center in New York City. Join us there as delegates from all over the world come to listen to and engage with speakers & sponsors from the leading Cloud Computing, IoT & Big Data companies. Cloud Expo & @ThingsExpo are the leading events covering the booming market of Cloud Computing, IoT & Big Data for the enterprise. Speakers from all over the world will be hand-picked for their ability to explore the economic strategies that utility/cloud computing provides. Whether public, private, or in a hybrid form, clo...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace.
Be Among the First 100 to Attend & Receive a Smart Beacon. The Physical Web is an open web project within the Chrome team at Google. Scott Jenson leads a team that is working to leverage the scalability and openness of the web to talk to smart devices. The Physical Web uses bluetooth low energy beacons to broadcast an URL wirelessly using an open protocol. Nearby devices can find all URLs in the room, rank them and let the user pick one from a list. Each device is, in effect, a gateway to a web page. This unlocks entirely new use cases so devices can offer tiny bits of information or simple i...
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, will address the big issues involving these technologies and, more important, the results they will achieve. How important are public, private, and hybrid cloud to the enterprise? How does one define Big Data? And how is the IoT tying all this together?
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
TechCrunch reported that "Berlin-based relayr, maker of the WunderBar, an Internet of Things (IoT) hardware dev kit which resembles a chunky chocolate bar, has closed a $2.3 million seed round, from unnamed U.S. and Switzerland-based investors. The startup had previously raised a €250,000 friend and family round, and had been on track to close a €500,000 seed earlier this year — but received a higher funding offer from a different set of investors, which is the $2.3M round it’s reporting."
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital busines...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The Internet of Things needs an entirely new security model, or does it? Can we save some old and tested controls for the latest emerging and different technology environments? In his session at Internet of @ThingsExpo, Davi Ottenheimer, EMC Senior Director of Trust, will review hands-on lessons with IoT devices and reveal privacy options and a new risk balance you might not expect.
IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is new, what is old, and what the future may hold.
Swiss innovators dizmo Inc. launches its ground-breaking software, which turns any digital surface into an immersive platform. The dizmo platform seamlessly connects digital and physical objects in the home and at the workplace. Dizmo breaks down traditional boundaries between device, operating systems, apps and software, transforming the way users work, play and live. It supports orchestration and collaboration in an unparalleled way enabling any data to instantaneously be accessed on any surface, anywhere and made interactive. Dizmo brings fantasies as seen in Sci-fi movies such as Iro...