Click here to close now.

Welcome!

Java IoT Authors: Liz McMillan, Pat Romanski, Elizabeth White, Roger Strukhoff, Carmen Gonzalez

Related Topics: Java IoT

Java IoT: Article

An Introduction to Service Data Objects

Integrating relational data into Web applications

Late last year, IBM Corp., and BEA Systems, Inc., introduced Service Data Objects (SDO), a new data programming specification that complements existing Java 2 Enterprise Edition technologies and enables service-oriented architectures by providing uniform data access for a wide variety of service and resource types. Not only does SDO enable a consistent approach to data access, but it also provides features that simplify common application tasks, such as allowing data browsing and update while the application is disconnected from the data source.

In this article we explain how SDO works and where it may fit into your own applications. We also take a closer look at how you can use SDO to retrieve and modify data stored in a relational database.

SDO Concepts
At the core of SDO are DataGraphs and Data Mediator Services (DMS). In simple terms, an application program obtains a DataGraph from a DMS that is specific to some back-end data store. The program can then examine and/or update the data contained in the graph. Optionally the program can employ a DMS to propagate the entire set of updates back to the original data source.

DataGraph
As a program object, a DataGraph provides an in-memory, nonpersistent copy of data. A program can work with this data even when there's no connection to the original data source. The data in a DataGraph is organized as a group of DataObjects, which may be linked together (i.e., the data is structured as a "graph"). A DataGraph also contains a schema that describes the structure of the DataObject type(s) contained in the DataGraph. To handle updates, a DataGraph also maintains a change history to track all modifications made to the graph.

Each DataObject contains a set of properties, which can be primitive values or references to other DataObjects contained in the DataGraph. If a DataObject's schema is known at development time, a developer can use automated tools to generate typed interfaces that simplify DataObject access. Alternatively, the application can define the schema at runtime, allowing dynamic access of DataObjects. With either static or dynamic access, linked data can be accessed in either a breadth-first or depth-first manner. For example, if a DataGraph contains customers and related orders, then orders can be obtained directly from the DataGraph or from their parent customer DataObject. SDO also allows for accessing data through XML Path Language (XPath) subset expressions.

Disconnected Programming Model
The DataGraph's disconnected, data source-independent nature provides a simple programming model, supports common application patterns, and offers a potential performance advantage.

Today, J2EE application developers have a wide variety of persistence frameworks to choose from, such as JDBC, EJB, or JDO. These frameworks have different APIs and are often complex, requiring developers to spend a great deal of time learning multiple APIs rather than developing applications. Since SDO provides a single data access API regardless of the persistence mechanism, developers can choose the framework that best fits an application without using different APIs.

Some developers strive for similar independence by developing custom Java objects to encapsulate data from different data sources. This tactic makes use of the Data Access Object design pattern. SDO inherently supports this pattern, freeing developers from the need to develop their own infrastructure.

To improve performance, some types of applications can exploit the DataGraph's support for applying multiple updates in one method call to reduce the number of connections and/or database operations. By storing data from multiple database rows and tables in a DataGraph, applications can make changes to the data without making additional round-trips to the database.

Mediators
An SDO DataGraph must be populated from a data source or a service. The SDO component that populates a DataGraph is called a data mediator service (DMS). A DMS also propagates changes to the in-memory DataGraph back to the originating data source. Note that the current SDO specification does not define a specific API for DMSs - beyond a few basic requirements, each DMS provider is free to design the DMS that best suits the associated data source.

Typically, a DMS accesses a single type of data source, for example, JDBC resources or entity EJBs. All DMSs require the developer to provide a description of the data to be accessed. This data description (or metadata) typically consists of a schema and a query over the associated data source.

Figure 1, from the SDO specification, illustrates the flow of data during a typical interaction between an SDO client and a DMS. The client makes a request to the DMS to return a DataGraph. The DMS reads the requested data from the data source, constructs a DataGraph of related DataObjects, and returns the DataGraph to the application. The SDO client makes changes to the DataGraph in-memory and then sends the modified DataGraph back to the DMS. The DMS examines the ChangeSummary contained in the graph and propagates the changes back to the original data source.

Because the DataGraph is disconnected from the data source, it's possible that another application will update the data (in the data source) that was used to populate a DataGraph before the application requests the DMS to propagate the application's changes back to the data source. To handle such potential update conflicts, a DMS typically implements some form of "optimistic" concurrency control and throws an exception to the application when a data collision occurs. At that point, it is the application's responsibility to recover from the collision, for example, by rereading the data and restarting the transaction.

Too-frequent collisions under an optimistic concurrency approach can degrade performance as well as aggravate end users. In applications where multiple applications will often attempt concurrent changes to the same data, optimistic concurrency control may not be a good choice. However, for applications without this behavior, optimistic concurrency control can improve performance by reducing lock contention.

Metamodel
The SDO specification assumes the presence of a metamodel and metadata API for the DataGraph, but does not specify one explicitly. Today, SDO could be implemented with a variety of metamodels and schema languages such as XML Schema or the Essential Meta Object Facility (EMOF). The metamodel implementation does not affect SDO end users.

XML Serialization
SDO defines the XML format for DataGraphs and DataObjects, and specifies that the format can be customized by an XSD. This same format is used for Java serialization. The serialized form of a DataGraph includes the DataObjects as well as the schema and change summary. This capability allows data to be easily transferred over the wire as would be required by a Web service invocation.

Relationship to Other J2EE Technologies
SDO can complement or simplify existing J2EE technologies. SDO complements JDBC by providing a more powerful framework and API for data access. In a typical relational database, data is normalized into multiple tables. When this data is read using a join query through JDBC, it's returned to the application in a tabular format that includes some data redundantly (e.g., an order number may be repeated with all individual line items for the same order). This format doesn't directly correspond to Java's object-oriented data model and can complicate navigation and update operations. A JDBC DMS can restructure this tabular data into a graph of related DataObjects. For example, an order might be represented by a DataObject that contains a list of references to other DataObjects containing line-item data. This allows an application to use standard Java techniques to access and modify the data.

Data access via EJBs can also be enhanced by using SDO. To implement a disconnected Data Access Object design pattern with EJBs alone, an application must use some combination of copy helper objects, session beans, and EJB access beans. An EJB DMS provides a ready-to-use disconnected architecture and frees developers from having to implement their own framework or custom artifacts.

SDO could also be used to complement other related technologies. For example:

  • JSR 227: Declaratively binding and accessing data in J2EE applications. SDO could be used as the mechanism to return results from the data source.
  • JSR 225: XQuery API for Java (XQJ). A Data Mediator Service could use the provided API to return SDOs.
  • JDO 2.0: SDO could provide data transfer objects from JDO persistent objects.
  • WEB UI Data Binding: JSF can use SDOs as a data binding. JSTL can use an SDO DataObject impl that implements the map interface.
Security
Security is not part of the current SDO model, so security in an SDO-based application is provided at the edges. For example, if an SDO-based application is developed that employs an EJB session bean and a JDBC connection, then security is provided at the boundaries of the application by these two J2EE components.

SDO with JDBC
SDO provides a uniform model for accessing data from a variety of services or data sources, including JDBC. Figure 2 shows interactions among the main artifacts involved when an application uses SDO over JDBC. Notice how the application code calls mediator and DataGraph methods, while the mediator calls JDBC and DataGraph methods, thus insulating the application from JDBC.

There are three central aspects to using a JDBC mediator: metadata, connections, and transaction handling.

Metadata
The application must supply the JDBC DMS with a metadata object that specifies the data to be retrieved. For a JDBC mediator, the metadata contains an augmented relational database schema that defines a set of tables, their relationships, and selection and ordering criteria. The JDBC DMS creates a DataGraph that corresponds to the provided schema definition. Each DataObject type within the DataGraph corresponds to a table definition in the schema, and each DataObject property corresponds to a table column.

The JDBC DMS uses the metadata to generate a SQL Select statement to retrieve data for the DataGraph. The simplest metadata example would describe a single table and no selection or ordering. For this specification, the JDBC mediator would retrieve all rows of the table and create a DataGraph that contains a list of DataObjects, with each DataObject containing the data from one row in the table. Each DataObject will have a set of values corresponding to the values from each column.

A more complex example might involve two related tables; say Customers and their respective Orders. In this case, the metadata must specify the relationship between the two tables, which will subsequently be reflected in a corresponding relationship between two types of DataObjects.

The DataGraph returned in this case would contain a list of Customer DataObjects and each of these Customer DataObjects would have a list of related Order DataObjects. The DataGraph will contain all Customers and Orders; they are organized as a tree with Customers at the "root" of the tree and related Orders branching off of each Customer.

Applications will frequently want data only from specified rows of a table. In this case, the metadata for a JDBC DMS specifies selection criteria. For example, customers might be selected from a particular zip code or with a particular last name. Also, the DataObjects in the graph can optionally be ordered by specifying "order by" columns in the metadata.

Normally the JDBC DMS generates SQL select, insert, update, and delete statements to read and update the associated relational database. However, an application can optionally provide an explicit Select statement for the mediator to use. If this option is used, the DMS will then generate only the complementary insert, update, and delete statements and will use the provided select statement as is.

Connections
In addition to specifying what data to retrieve, an application must specify which data source the DMS should access. For a JDBC DMS, this can be done by specifying a JDBC Connection object. The DMS will use this connection for all database interactions.

Transactions
As mentioned earlier, SDO provides a disconnected programming model and, accordingly, DMSs will typically connect to a data store only to read data for graph creation or to write data to reflect changes back to the store.

When an application requests the JDBC DMS to retrieve data and produce a DataGraph, the DMS starts a transaction, reads the data, creates the graph, and ends the transaction. The DataGraph is returned to the application and is "disconnected" in the sense that it is not associated with any connection or transaction; there are no locks held on the data.

The client can now read data from the DataGraph and make changes to it while it is in memory and disconnected from the data source. All changes made to the graph are recorded by the DataGraph. At some point the client will want to push these changes back to the data source and call the JDBC DMS "applyChanges" API.

As part of the "applyChanges" function, the JDBC DMS will reflect to the data store all changes made to the graph as part of a single transaction; this is true whether there is a single change to the graph or an entire batch of changes.

The disconnected programming model generally implies the use of an optimistic concurrency control scheme to push changes back to the data store; this is the approach taken by the JDBC DMS.

When the DMS attempts to apply DataGraph changes back to the data store, each row being updated is checked to ensure it has not been modified since it was originally read. If no intervening modifications have taken place, the update proceeds. If a row has been modified since the data was read, a collision has occurred; the update transaction is rolled back and an exception is thrown to the client.

There is also an option to use the DMS within a larger transaction. If this option is used, the DMS will assume that the client is controlling the transaction and will not perform any commit or rollback operations.

An Example
The following simple example demonstrates JDBC database access with SDO employing the JDBC DMS. This example has six steps, each illustrated by a code snippet.

Step 1: Create the JDBC mediator metadata instance
Create the metadata instance to represent the Customer table. This example demonstrates the creation of the JDBC DMS metadata programmatically. This is an obvious candidate for tooling support. Remember that the JDBC DMS uses a simple mapping scheme whereby each table definition results in a DataObject type and each table column results in a DataObject type property (see Listing 1).

Step 2: Create the DMS instance as in Listing 2

Step 3: Read the DataGraph from the database


//Create the "lastName" argument for the filter predicate
DataObject arguments = mediator.getParameterDataObject();
arguments.put("CUSTLASTNAME", "Pavick");
DataObject graph = mediator.getGraph(arguments);

Step 4 : Retrieve data from the graph


//Iterate through all returned customers and print the first name
Iterator i = graph.getList("CUSTOMER").iterator();
	while (i.hasNext()) {
	DataObject cust = (DataObject) i.next();
	System.out.println(cust.getString("CUSTFIRSTNAME"));
	}

Step 5: Change the DataGraph


List customers = graph.getList("CUSTOMER");
//Get the first customer in the graph and update the name
DataObject customer = (DataObject)customers.get(0);
	customer.setString("CUSTFIRSTNAME", "Kevin");

Step 6: Apply DataGraph changes back to the database

mediator.applyChanges(graph);

Variations on the Example
Metadata File

In Step 1 we created the mediator metadata programmatically. An alternative is to provide the metadata in the form of an XML file. Listing 3 is the XML representation of the Customer metadata.

Using this file, Step 1 would not be necessary and Step 2 would become:

Step 2: Create the mediator instance as shown in Listing 4

Static Types
The example provided above uses the dynamic access APIs of DataOb-ject. The JDBC DMS also supports the use of static SDO types. To use the static API access to DataObjects, a set of static types is generated at development time and tools are provided for this purpose. Using static types provides a cleaner user API as well as a performance boost at runtime. The generation step is beyond the scope of this article, but this is what Step 4 looks like when using a static customer DataObject.

Step 4: Retrieve data from the graph


//Iterate through all returned customers and print the first name
Iterator i = graph.getCustomers().iterator();
	while (i.hasNext()) {
	Customer cust = (Customer) i.next();
	System.out.println(cust.getFirstName());
	}

Paging
The JDBC Data Mediator Service also provides a paging capability that can be useful for marching through large data sets. A pager interface provides a cursor-like next() capability. The next() function returns a graph representing the next page of data from the entire data set specified by the mediator metadata; a previous() function is also available. A CountingPager is also provided that allows the retrieval of a specified page from the data set.

Listing 5 illustrates paging through a large set of customer instances using a Counting Pager.

Conclusion
In this article we have explored some of the key SDO concepts and also drilled down into a specific use of the technology for relational database access employing a JDBC Data Mediator.

SDO is a standard from IBM and BEA and there is a reference implementation under development at www.eclipse.org/emf. This EMF-based implementation of SDO will also be delivered with WebSphere Application Server 6.0 and will be complemented by:

  • JDBC Data Mediator Service
  • EJB Data Mediator Service
It is anticipated that the 6.0 version of WebSphere Studio will contain complete support for creating applications that leverage SDO; this will include visual tooling to configure the JDBC DMS. With the power of SDO, relational data can be integrated into Web applications more easily than ever.

Acknowledgments
We would like to thank Stephen Brodsky and Tom Schneider for their assistance with this article.

More Stories By Kevin Williams

Kevin Williams is a software developer with IBM and is leading IBM’s participation in the DAS subproject of the Apache Tuscany incubator.

More Stories By Brent Daniel

Brent Daniel is a software developer with IBM. He currently works on a JDBC data mediator service for WebSphere Application Server.

Comments (2)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
SYS-CON Events announced today that BMC will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. BMC delivers software solutions that help IT transform digital enterprises for the ultimate competitive business advantage. BMC has worked with thousands of leading companies to create and deliver powerful IT management services. From mainframe to cloud to mobile, BMC pairs high-speed digital innovation with robust IT industrialization – allowing customers to provide amazing user experiences with optimized IT per...
2015 predictions circa 1970: houses anticipate our needs and adapt, city infrastructure is citizen and situation aware, office buildings identify and preprocess you. Today smart buildings have no such collective conscience, no shared set of fundamental services to identify, predict and synchronize around us. LiveSpace and M2Mi are changing that. LiveSpace Smart Environment devices deliver over the M2Mi IoT Platform real time presence, awareness and intent analytics as a service to local connected devices. In her session at @ThingsExpo, Sarah Cooper, VP Business of Development at M2Mi, will d...
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In this session, James Kirkland, Red Hat's Chief Architect for the Internet of Things and Intelligent Systems, will describe how to revolutionize your architecture and...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
We’re entering a new era of computing technology that many are calling the Internet of Things (IoT). Machine to machine, machine to infrastructure, machine to environment, the Internet of Everything, the Internet of Intelligent Things, intelligent systems – call it what you want, but it’s happening, and its potential is huge. IoT is comprised of smart machines interacting and communicating with other machines, objects, environments and infrastructures. As a result, huge volumes of data are being generated, and that data is being processed into useful actions that can “command and control” thi...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
SYS-CON Events announced today that MetraTech, now part of Ericsson, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Ericsson is the driving force behind the Networked Society- a world leader in communications infrastructure, software and services. Some 40% of the world’s mobile traffic runs through networks Ericsson has supplied, serving more than 2.5 billion subscribers.
Thanks to widespread Internet adoption and more than 10 billion connected devices around the world, companies became more excited than ever about the Internet of Things in 2014. Add in the hype around Google Glass and the Nest Thermostat, and nearly every business, including those from traditionally low-tech industries, wanted in. But despite the buzz, some very real business questions emerged – mainly, not if a device can be connected, or even when, but why? Why does connecting to the cloud create greater value for the user? Why do connected features improve the overall experience? And why do...
SYS-CON Events announced today that O'Reilly Media has been named “Media Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York City, NY. O'Reilly Media spreads the knowledge of innovators through its books, online services, magazines, and conferences. Since 1978, O'Reilly Media has been a chronicler and catalyst of cutting-edge development, homing in on the technology trends that really matter and spurring their adoption by amplifying "faint signals" from the alpha geeks who are creating the future. An active participa...
Imagine a world where targeting, attribution, and analytics are just as intrinsic to the physical world as they currently are to display advertising. Advances in technologies and changes in consumer behavior have opened the door to a whole new category of personalized marketing experience based on direct interactions with products. The products themselves now have a voice. What will they say? Who will control it? And what does it take for brands to win in this new world? In his session at @ThingsExpo, Zack Bennett, Vice President of Customer Success at EVRYTHNG, will answer these questions a...
The 4th International Internet of @ThingsExpo, co-located with the 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - announces that its Call for Papers is open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The multi-trillion economic opportunity around the "Internet of Things" (IoT) is emerging as the hottest topic for investors in 2015. As we connect the physical world with information technology, data from actions, processes and the environment can increase sales, improve efficiencies, automate daily activities and minimize risk. In his session at @ThingsExpo, Ed Maguire, Senior Analyst at CLSA Americas, will describe what is new and different about IoT, explore financial, technological and real-world impact across consumer and business use cases. Why now? Significant corporate and venture...
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehe...
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
There will be 150 billion connected devices by 2020. New digital businesses have already disrupted value chains across every industry. APIs are at the center of the digital business. You need to understand what assets you have that can be exposed digitally, what their digital value chain is, and how to create an effective business model around that value chain to compete in this economy. No enterprise can be complacent and not engage in the digital economy. Learn how to be the disruptor and not the disruptee.