Welcome!

Java IoT Authors: Liz McMillan, Elizabeth White, Pat Romanski, Sematext Blog, Xenia von Wedel

Related Topics: Java IoT

Java IoT: Article

An Introduction to Service Data Objects

Integrating relational data into Web applications

Late last year, IBM Corp., and BEA Systems, Inc., introduced Service Data Objects (SDO), a new data programming specification that complements existing Java 2 Enterprise Edition technologies and enables service-oriented architectures by providing uniform data access for a wide variety of service and resource types. Not only does SDO enable a consistent approach to data access, but it also provides features that simplify common application tasks, such as allowing data browsing and update while the application is disconnected from the data source.

In this article we explain how SDO works and where it may fit into your own applications. We also take a closer look at how you can use SDO to retrieve and modify data stored in a relational database.

SDO Concepts
At the core of SDO are DataGraphs and Data Mediator Services (DMS). In simple terms, an application program obtains a DataGraph from a DMS that is specific to some back-end data store. The program can then examine and/or update the data contained in the graph. Optionally the program can employ a DMS to propagate the entire set of updates back to the original data source.

DataGraph
As a program object, a DataGraph provides an in-memory, nonpersistent copy of data. A program can work with this data even when there's no connection to the original data source. The data in a DataGraph is organized as a group of DataObjects, which may be linked together (i.e., the data is structured as a "graph"). A DataGraph also contains a schema that describes the structure of the DataObject type(s) contained in the DataGraph. To handle updates, a DataGraph also maintains a change history to track all modifications made to the graph.

Each DataObject contains a set of properties, which can be primitive values or references to other DataObjects contained in the DataGraph. If a DataObject's schema is known at development time, a developer can use automated tools to generate typed interfaces that simplify DataObject access. Alternatively, the application can define the schema at runtime, allowing dynamic access of DataObjects. With either static or dynamic access, linked data can be accessed in either a breadth-first or depth-first manner. For example, if a DataGraph contains customers and related orders, then orders can be obtained directly from the DataGraph or from their parent customer DataObject. SDO also allows for accessing data through XML Path Language (XPath) subset expressions.

Disconnected Programming Model
The DataGraph's disconnected, data source-independent nature provides a simple programming model, supports common application patterns, and offers a potential performance advantage.

Today, J2EE application developers have a wide variety of persistence frameworks to choose from, such as JDBC, EJB, or JDO. These frameworks have different APIs and are often complex, requiring developers to spend a great deal of time learning multiple APIs rather than developing applications. Since SDO provides a single data access API regardless of the persistence mechanism, developers can choose the framework that best fits an application without using different APIs.

Some developers strive for similar independence by developing custom Java objects to encapsulate data from different data sources. This tactic makes use of the Data Access Object design pattern. SDO inherently supports this pattern, freeing developers from the need to develop their own infrastructure.

To improve performance, some types of applications can exploit the DataGraph's support for applying multiple updates in one method call to reduce the number of connections and/or database operations. By storing data from multiple database rows and tables in a DataGraph, applications can make changes to the data without making additional round-trips to the database.

Mediators
An SDO DataGraph must be populated from a data source or a service. The SDO component that populates a DataGraph is called a data mediator service (DMS). A DMS also propagates changes to the in-memory DataGraph back to the originating data source. Note that the current SDO specification does not define a specific API for DMSs - beyond a few basic requirements, each DMS provider is free to design the DMS that best suits the associated data source.

Typically, a DMS accesses a single type of data source, for example, JDBC resources or entity EJBs. All DMSs require the developer to provide a description of the data to be accessed. This data description (or metadata) typically consists of a schema and a query over the associated data source.

Figure 1, from the SDO specification, illustrates the flow of data during a typical interaction between an SDO client and a DMS. The client makes a request to the DMS to return a DataGraph. The DMS reads the requested data from the data source, constructs a DataGraph of related DataObjects, and returns the DataGraph to the application. The SDO client makes changes to the DataGraph in-memory and then sends the modified DataGraph back to the DMS. The DMS examines the ChangeSummary contained in the graph and propagates the changes back to the original data source.

Because the DataGraph is disconnected from the data source, it's possible that another application will update the data (in the data source) that was used to populate a DataGraph before the application requests the DMS to propagate the application's changes back to the data source. To handle such potential update conflicts, a DMS typically implements some form of "optimistic" concurrency control and throws an exception to the application when a data collision occurs. At that point, it is the application's responsibility to recover from the collision, for example, by rereading the data and restarting the transaction.

Too-frequent collisions under an optimistic concurrency approach can degrade performance as well as aggravate end users. In applications where multiple applications will often attempt concurrent changes to the same data, optimistic concurrency control may not be a good choice. However, for applications without this behavior, optimistic concurrency control can improve performance by reducing lock contention.

Metamodel
The SDO specification assumes the presence of a metamodel and metadata API for the DataGraph, but does not specify one explicitly. Today, SDO could be implemented with a variety of metamodels and schema languages such as XML Schema or the Essential Meta Object Facility (EMOF). The metamodel implementation does not affect SDO end users.

XML Serialization
SDO defines the XML format for DataGraphs and DataObjects, and specifies that the format can be customized by an XSD. This same format is used for Java serialization. The serialized form of a DataGraph includes the DataObjects as well as the schema and change summary. This capability allows data to be easily transferred over the wire as would be required by a Web service invocation.

Relationship to Other J2EE Technologies
SDO can complement or simplify existing J2EE technologies. SDO complements JDBC by providing a more powerful framework and API for data access. In a typical relational database, data is normalized into multiple tables. When this data is read using a join query through JDBC, it's returned to the application in a tabular format that includes some data redundantly (e.g., an order number may be repeated with all individual line items for the same order). This format doesn't directly correspond to Java's object-oriented data model and can complicate navigation and update operations. A JDBC DMS can restructure this tabular data into a graph of related DataObjects. For example, an order might be represented by a DataObject that contains a list of references to other DataObjects containing line-item data. This allows an application to use standard Java techniques to access and modify the data.

Data access via EJBs can also be enhanced by using SDO. To implement a disconnected Data Access Object design pattern with EJBs alone, an application must use some combination of copy helper objects, session beans, and EJB access beans. An EJB DMS provides a ready-to-use disconnected architecture and frees developers from having to implement their own framework or custom artifacts.

SDO could also be used to complement other related technologies. For example:

  • JSR 227: Declaratively binding and accessing data in J2EE applications. SDO could be used as the mechanism to return results from the data source.
  • JSR 225: XQuery API for Java (XQJ). A Data Mediator Service could use the provided API to return SDOs.
  • JDO 2.0: SDO could provide data transfer objects from JDO persistent objects.
  • WEB UI Data Binding: JSF can use SDOs as a data binding. JSTL can use an SDO DataObject impl that implements the map interface.
Security
Security is not part of the current SDO model, so security in an SDO-based application is provided at the edges. For example, if an SDO-based application is developed that employs an EJB session bean and a JDBC connection, then security is provided at the boundaries of the application by these two J2EE components.

SDO with JDBC
SDO provides a uniform model for accessing data from a variety of services or data sources, including JDBC. Figure 2 shows interactions among the main artifacts involved when an application uses SDO over JDBC. Notice how the application code calls mediator and DataGraph methods, while the mediator calls JDBC and DataGraph methods, thus insulating the application from JDBC.

There are three central aspects to using a JDBC mediator: metadata, connections, and transaction handling.

Metadata
The application must supply the JDBC DMS with a metadata object that specifies the data to be retrieved. For a JDBC mediator, the metadata contains an augmented relational database schema that defines a set of tables, their relationships, and selection and ordering criteria. The JDBC DMS creates a DataGraph that corresponds to the provided schema definition. Each DataObject type within the DataGraph corresponds to a table definition in the schema, and each DataObject property corresponds to a table column.

The JDBC DMS uses the metadata to generate a SQL Select statement to retrieve data for the DataGraph. The simplest metadata example would describe a single table and no selection or ordering. For this specification, the JDBC mediator would retrieve all rows of the table and create a DataGraph that contains a list of DataObjects, with each DataObject containing the data from one row in the table. Each DataObject will have a set of values corresponding to the values from each column.

A more complex example might involve two related tables; say Customers and their respective Orders. In this case, the metadata must specify the relationship between the two tables, which will subsequently be reflected in a corresponding relationship between two types of DataObjects.

The DataGraph returned in this case would contain a list of Customer DataObjects and each of these Customer DataObjects would have a list of related Order DataObjects. The DataGraph will contain all Customers and Orders; they are organized as a tree with Customers at the "root" of the tree and related Orders branching off of each Customer.

Applications will frequently want data only from specified rows of a table. In this case, the metadata for a JDBC DMS specifies selection criteria. For example, customers might be selected from a particular zip code or with a particular last name. Also, the DataObjects in the graph can optionally be ordered by specifying "order by" columns in the metadata.

Normally the JDBC DMS generates SQL select, insert, update, and delete statements to read and update the associated relational database. However, an application can optionally provide an explicit Select statement for the mediator to use. If this option is used, the DMS will then generate only the complementary insert, update, and delete statements and will use the provided select statement as is.

Connections
In addition to specifying what data to retrieve, an application must specify which data source the DMS should access. For a JDBC DMS, this can be done by specifying a JDBC Connection object. The DMS will use this connection for all database interactions.

Transactions
As mentioned earlier, SDO provides a disconnected programming model and, accordingly, DMSs will typically connect to a data store only to read data for graph creation or to write data to reflect changes back to the store.

When an application requests the JDBC DMS to retrieve data and produce a DataGraph, the DMS starts a transaction, reads the data, creates the graph, and ends the transaction. The DataGraph is returned to the application and is "disconnected" in the sense that it is not associated with any connection or transaction; there are no locks held on the data.

The client can now read data from the DataGraph and make changes to it while it is in memory and disconnected from the data source. All changes made to the graph are recorded by the DataGraph. At some point the client will want to push these changes back to the data source and call the JDBC DMS "applyChanges" API.

As part of the "applyChanges" function, the JDBC DMS will reflect to the data store all changes made to the graph as part of a single transaction; this is true whether there is a single change to the graph or an entire batch of changes.

The disconnected programming model generally implies the use of an optimistic concurrency control scheme to push changes back to the data store; this is the approach taken by the JDBC DMS.

When the DMS attempts to apply DataGraph changes back to the data store, each row being updated is checked to ensure it has not been modified since it was originally read. If no intervening modifications have taken place, the update proceeds. If a row has been modified since the data was read, a collision has occurred; the update transaction is rolled back and an exception is thrown to the client.

There is also an option to use the DMS within a larger transaction. If this option is used, the DMS will assume that the client is controlling the transaction and will not perform any commit or rollback operations.

An Example
The following simple example demonstrates JDBC database access with SDO employing the JDBC DMS. This example has six steps, each illustrated by a code snippet.

Step 1: Create the JDBC mediator metadata instance
Create the metadata instance to represent the Customer table. This example demonstrates the creation of the JDBC DMS metadata programmatically. This is an obvious candidate for tooling support. Remember that the JDBC DMS uses a simple mapping scheme whereby each table definition results in a DataObject type and each table column results in a DataObject type property (see Listing 1).

Step 2: Create the DMS instance as in Listing 2

Step 3: Read the DataGraph from the database


//Create the "lastName" argument for the filter predicate
DataObject arguments = mediator.getParameterDataObject();
arguments.put("CUSTLASTNAME", "Pavick");
DataObject graph = mediator.getGraph(arguments);

Step 4 : Retrieve data from the graph


//Iterate through all returned customers and print the first name
Iterator i = graph.getList("CUSTOMER").iterator();
	while (i.hasNext()) {
	DataObject cust = (DataObject) i.next();
	System.out.println(cust.getString("CUSTFIRSTNAME"));
	}

Step 5: Change the DataGraph


List customers = graph.getList("CUSTOMER");
//Get the first customer in the graph and update the name
DataObject customer = (DataObject)customers.get(0);
	customer.setString("CUSTFIRSTNAME", "Kevin");

Step 6: Apply DataGraph changes back to the database

mediator.applyChanges(graph);

Variations on the Example
Metadata File

In Step 1 we created the mediator metadata programmatically. An alternative is to provide the metadata in the form of an XML file. Listing 3 is the XML representation of the Customer metadata.

Using this file, Step 1 would not be necessary and Step 2 would become:

Step 2: Create the mediator instance as shown in Listing 4

Static Types
The example provided above uses the dynamic access APIs of DataOb-ject. The JDBC DMS also supports the use of static SDO types. To use the static API access to DataObjects, a set of static types is generated at development time and tools are provided for this purpose. Using static types provides a cleaner user API as well as a performance boost at runtime. The generation step is beyond the scope of this article, but this is what Step 4 looks like when using a static customer DataObject.

Step 4: Retrieve data from the graph


//Iterate through all returned customers and print the first name
Iterator i = graph.getCustomers().iterator();
	while (i.hasNext()) {
	Customer cust = (Customer) i.next();
	System.out.println(cust.getFirstName());
	}

Paging
The JDBC Data Mediator Service also provides a paging capability that can be useful for marching through large data sets. A pager interface provides a cursor-like next() capability. The next() function returns a graph representing the next page of data from the entire data set specified by the mediator metadata; a previous() function is also available. A CountingPager is also provided that allows the retrieval of a specified page from the data set.

Listing 5 illustrates paging through a large set of customer instances using a Counting Pager.

Conclusion
In this article we have explored some of the key SDO concepts and also drilled down into a specific use of the technology for relational database access employing a JDBC Data Mediator.

SDO is a standard from IBM and BEA and there is a reference implementation under development at www.eclipse.org/emf. This EMF-based implementation of SDO will also be delivered with WebSphere Application Server 6.0 and will be complemented by:

  • JDBC Data Mediator Service
  • EJB Data Mediator Service
It is anticipated that the 6.0 version of WebSphere Studio will contain complete support for creating applications that leverage SDO; this will include visual tooling to configure the JDBC DMS. With the power of SDO, relational data can be integrated into Web applications more easily than ever.

Acknowledgments
We would like to thank Stephen Brodsky and Tom Schneider for their assistance with this article.

More Stories By Kevin Williams

Kevin Williams is a software developer with IBM and is leading IBM’s participation in the DAS subproject of the Apache Tuscany incubator.

More Stories By Brent Daniel

Brent Daniel is a software developer with IBM. He currently works on a JDBC data mediator service for WebSphere Application Server.

Comments (2) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Brahm van Niekerk 10/12/04 08:41:38 AM EDT

JeeWiz implemented a similar technology last year in 2003 known as DataViews. DataViews became necessary for performance reasons when reading large data sets from Data Sources in Web Systems. JeeWiz is an MDA implementation that generates code for MS .NET and J2EE Application Servers, such as WebSphere, WebLogic, Oracle and JBoss. True portability as a design pattern was proven for us when we implemented it in both J2EE (JDBC) and in MS .NET implementation as Datasets. We have found that being able to generate systems for both J2EE and .NET from the same specification is hugely advantageous especially for vendors having to support these platforms. More information can be seen at http://www.jeewiz.com.

Rost Vashevnik 10/11/04 07:43:53 PM EDT

The capabilities described in this article are already implemented in MetaBoss - an Open Source MDA tool suite. It includes generation of Data Objects, data base schemas etc. from the UML model. The produced code is "technology independent" - meaning that it will work with WebSphere, JBoss or even just non-J2EE Tomcat deployment. You can see it for yourself at www.metaboss.com

@ThingsExpo Stories
Fact is, enterprises have significant legacy voice infrastructure that’s costly to replace with pure IP solutions. How can we bring this analog infrastructure into our shiny new cloud applications? There are proven methods to bind both legacy voice applications and traditional PSTN audio into cloud-based applications and services at a carrier scale. Some of the most successful implementations leverage WebRTC, WebSockets, SIP and other open source technologies. In his session at @ThingsExpo, Da...
As data explodes in quantity, importance and from new sources, the need for managing and protecting data residing across physical, virtual, and cloud environments grow with it. Managing data includes protecting it, indexing and classifying it for true, long-term management, compliance and E-Discovery. Commvault can ensure this with a single pane of glass solution – whether in a private cloud, a Service Provider delivered public cloud or a hybrid cloud environment – across the heterogeneous enter...
"IoT is going to be a huge industry with a lot of value for end users, for industries, for consumers, for manufacturers. How can we use cloud to effectively manage IoT applications," stated Ian Khan, Innovation & Marketing Manager at Solgeniakhela, in this SYS-CON.tv interview at @ThingsExpo, held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA.
Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more business becomes digital the more stakeholders are interested in this data including how it relates to business. Some of these people have never used a monitoring tool before. They have a question on their mind like “How is my application doing” but no id...
@GonzalezCarmen has been ranked the Number One Influencer and @ThingsExpo has been named the Number One Brand in the “M2M 2016: Top 100 Influencers and Brands” by Onalytica. Onalytica analyzed tweets over the last 6 months mentioning the keywords M2M OR “Machine to Machine.” They then identified the top 100 most influential brands and individuals leading the discussion on Twitter.
Information technology is an industry that has always experienced change, and the dramatic change sweeping across the industry today could not be truthfully described as the first time we've seen such widespread change impacting customer investments. However, the rate of the change, and the potential outcomes from today's digital transformation has the distinct potential to separate the industry into two camps: Organizations that see the change coming, embrace it, and successful leverage it; and...
The Internet of Things (IoT) promises to simplify and streamline our lives by automating routine tasks that distract us from our goals. This promise is based on the ubiquitous deployment of smart, connected devices that link everything from industrial control systems to automobiles to refrigerators. Unfortunately, comparatively few of the devices currently deployed have been developed with an eye toward security, and as the DDoS attacks of late October 2016 have demonstrated, this oversight can ...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to impr...
More and more brands have jumped on the IoT bandwagon. We have an excess of wearables – activity trackers, smartwatches, smart glasses and sneakers, and more that track seemingly endless datapoints. However, most consumers have no idea what “IoT” means. Creating more wearables that track data shouldn't be the aim of brands; delivering meaningful, tangible relevance to their users should be. We're in a period in which the IoT pendulum is still swinging. Initially, it swung toward "smart for smar...
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
Businesses and business units of all sizes can benefit from cloud computing, but many don't want the cost, performance and security concerns of public cloud nor the complexity of building their own private clouds. Today, some cloud vendors are using artificial intelligence (AI) to simplify cloud deployment and management. In his session at 20th Cloud Expo, Ajay Gulati, Co-founder and CEO of ZeroStack, will discuss how AI can simplify cloud operations. He will cover the following topics: why clou...
Internet of @ThingsExpo, taking place June 6-8, 2017 at the Javits Center in New York City, New York, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. @ThingsExpo New York Call for Papers is now open.
"ReadyTalk is an audio and web video conferencing provider. We've really come to embrace WebRTC as the platform for our future of technology," explained Dan Cunningham, CTO of ReadyTalk, in this SYS-CON.tv interview at WebRTC Summit at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Successful digital transformation requires new organizational competencies and capabilities. Research tells us that the biggest impediment to successful transformation is human; consequently, the biggest enabler is a properly skilled and empowered workforce. In the digital age, new individual and collective competencies are required. In his session at 19th Cloud Expo, Bob Newhouse, CEO and founder of Agilitiv, drew together recent research and lessons learned from emerging and established compa...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, discussed the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
Everyone knows that truly innovative companies learn as they go along, pushing boundaries in response to market changes and demands. What's more of a mystery is how to balance innovation on a fresh platform built from scratch with the legacy tech stack, product suite and customers that continue to serve as the business' foundation. In his General Session at 19th Cloud Expo, Michael Chambliss, Head of Engineering at ReadyTalk, discussed why and how ReadyTalk diverted from healthy revenue and mor...
We are always online. We access our data, our finances, work, and various services on the Internet. But we live in a congested world of information in which the roads were built two decades ago. The quest for better, faster Internet routing has been around for a decade, but nobody solved this problem. We’ve seen band-aid approaches like CDNs that attack a niche's slice of static content part of the Internet, but that’s it. It does not address the dynamic services-based Internet of today. It does...
The 20th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held June 6-8, 2017, at the Javits Center in New York City, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Containers, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal ...
You have great SaaS business app ideas. You want to turn your idea quickly into a functional and engaging proof of concept. You need to be able to modify it to meet customers' needs, and you need to deliver a complete and secure SaaS application. How could you achieve all the above and yet avoid unforeseen IT requirements that add unnecessary cost and complexity? You also want your app to be responsive in any device at any time. In his session at 19th Cloud Expo, Mark Allen, General Manager of...