Click here to close now.




















Welcome!

Java IoT Authors: Liz McMillan, Dana Gardner, Elizabeth White, Pat Romanski, Automic Blog

Related Topics: Java IoT, Weblogic, Linux Containers

Java IoT: Article

Java Basics: Introduction to Java Threads, Part 2

Internet Portals Like Yahoo, CNN, or Your Bank's Web Site Use Them

In the previous lesson www.sys-con.com/story/?storyid=46096&de=1 I've explained the basics of Java threads. This time we'll talk about using threads for creating a little more advanced programs.

I'm sure each of you have visited some of the major Internet portals like Yahoo, CNN or your bank's Web site. These portals usually display different types of information like News, Weather, Stock Market quotes, etc. Each of these info pieces appears on the screen instantaneously even though it's coming to the portal from different servers, i.e. the News server may be located in Washington and the stock market data come from New York (see Figure 1 below).

Let's say it takes 4 seconds to receive the news and 3 seconds to get the stock prices. If your program will do it in a sequence, it'll take you 7 seconds total, but why not do this in parallel and reduce the total time to 4 seconds? After all these servers have their own processors that can work in independently from each other! We are not going to discuss Web technologies here, but I'll show you how to spawn parallel processing using multi-threading, collect the returned data and display the results to the user in one shot.

Our program will consist of the following classes:

  • MyPortal that will spawn the threads and collect their returns in an ArrayList of strings. It'll print entire content of this array when all threads complete.
  • NewsServer that will run for 4 seconds and return a message "We have good and bad news";
  • StockServer that will run for 3 seconds and return a message "The stock market is on the rise!".
These threads do not contain any code that actually gets some news or market data. My goal is to show you how threads can communicate with other classes, and after this part works, it wont be difficult to replace the line that prints a static message with a method call that actually connects to the Internet and gets the data as it was explained in the lesson on getting data from the Internet:.

The class in Listing 1 creates and starts two threads (news and stocks) and goes to sleep for 10 seconds just to keep the program alive for a while. Please note that the class MyPortal also passes to each thread a reference to its instance so the threads know were to return the results. After each thread completes, it returns the result to MyPortal by calling its method submitResult(). Each of the resulting strings is being added to the ArrayList dataToDisplay, and when its size grows to two elements MyPortal prints the content of content the collection dataToDisplay. A little later I'll explain why such use of an ArrayList may not be the best solution for this example.

Listing 1. The source code of the class MyPortal


import java.util.ArrayList;
public class MyPortal {
	ArrayList dataToDisplay = new ArrayList();
    public static void main(String args[]){
    	MyPortal mp =new MyPortal();
    	// Spawn the threads and pass them the referennce
    	// to the instance of MyPortal
    	NewsServer myNews = new NewsServer(mp);
    	Thread newsThread = new Thread(myNews);

    	StockServer myStocks = new StockServer(mp);
    	Thread stockThread = new Thread(myStocks);

    	//Start the threads
    	newsThread.start();
    	stockThread.start();

    	try {
    		System.out.println("MyPortal is sleeping...!");
			Thread.sleep(10000); // wait for 10 sec 
		} catch (InterruptedException e) {
			e.printStackTrace();
		}

		System.out.println("Good bye!");
	}

    // Add the data returned by a thread to collection
    public void submitResult(String data){
    	dataToDisplay.add(data);

    	// Print the data if both threads have submitted the data
    	// (a buggy version)
    	if (dataToDisplay.size()==2){
        	System.out.println(dataToDisplay);
    	}
    }
}

The output of this program looks as follows:

MyPortal is sleeping...
[The stock market is on the rise!, We have good and bad news]
Good bye!

The first line will be printed almost immediately, the second line in 4 seconds and the third one in 10 seconds.

Listing 2. The source code of the class StockServer


public class StockServer implements Runnable {
    MyPortal papa;
    // Constructor
    StockServer(MyPortal parent){
       	papa=parent;
    }

    public void run() {
	// Sleep for 3 seconds to emulate some processing
	// and return a string with the market data to the parent
 	try {
		Thread.sleep(3000);
		papa.submitResult("The stock market is on the rise!");
	} catch (InterruptedException e) {
			e.printStackTrace();
	}
    }
}

Listing 3. The source code of the class NewsServer


public class NewsServer implements Runnable {
    MyPortal papa;

    // Constructor
    NewsServer(MyPortal parent){
       	papa=parent;
    }

	public void run() {
	// Sleep for 4 seconds to emulate some processing
	// and return a string with the news to the parent

		try {
			Thread.sleep(4000);
			papa.submitResult("We have  good and bad news");
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
	}
}

The thread classes from Listing 2 and Listing 3 store the references to the parent class MyPortal in the variable papa. Each of the threads just sleeps for a specified number of seconds, wakes up and passes an appropriate text to papa.

Please note, that even on a single processor's machine the total execution time of our example is just a little more than 4 seconds. The reason is that our threads where "sleeping in parallel" and did not compete for the processor's time. But if you replace the sleeping part with a loop that performs some calculations, the timing will be different on a single processor machine: the program will run about 7 seconds. If you have a dual processor machine, you'll cut the processing time to 4 seconds again.

Thread Synchronization. A Race Condition.

When you write a multithreaded application you should consider possibility of a so-called race condition. This is a situation when you may get unpredictable results because multiple threads access a resource (i.e. a variable) at the same time. In our example two threads are calling the same method submitResult() which in turn accesses the variable dataToDisplay to add some data to it and check the size of this collection. Imagine that two or more threads finish their work at the same time. Let's look at a possible sequence of events:

  1. The NewsServer calls the method submitResult(). The size of dataToDisplay is 0.
  2. The StockServer calls the method submitResult() a split second later. The size of dataToDisplay is 0.
  3. The NewsServer grabs a zero-element dataToDisplay and starts adding its string there as a first element.
  4. The StockServer grabs a zero-element dataToDisplay (because the NewsServer has not finished adding its first the element yet) and starts adding its string there as a first element.
  5. After both threads are done, the dataToDisplay may wind up with having one element because the first thread's string has been overwritten by the second one. In this is the case, the size of the dataToDisplay will remain one and MyPortal will never print the news and stock data.
Since the probability of this situation is really small, your program may work properly for years and all of a sudden produce unexpected results. Bugs like this one are not easy to discover.

To avoid race conditions, the code that needs to access a "sensitive" variable must be locked (become unavailable for other threads) for the time when one thread works with it. When the first thread completes, the lock is released and another thread can get a hold of this variable/resource. You can arrange such locking either by using a Java keyword synchronized, or by using Java objects that are internally synchronized.

In our portal example, you can simply use the class Vector instead of ArrayList:

Vector dataToDisplay = new Vector();

Vector objects are internally synchronized in Java, and the second thread won't be able to add a string to the dataToDisplay collection until the first thread is done. Obviously, there is a price to pay for this convenience: synchronized objects are a little bit slower than non-synchronized ones.

The other solution is to put an explicit lock for a piece of code that must be completed without any interruption by other threads. For example, if you'll add the keyword synchronized to the signature of the method submitResult(), the second thread will not be able to call this method, if the first one is still executing it:

public synchronized void submitResult(String data){?}

You can also say that a lock is placed on the entire method submitResult().

You should try to minimize the locking time to avoid slowing down your programs. Java allows you to synchronize just a small portion of the code, which is more preferable than synchronizing an entire method.:


    public void submitResult(String data){
 
    	synchronized (this){
    	  dataToDisplay.add(data);
    	}

    	if (dataToDisplay.size()==2){
        	System.out.println(dataToDisplay);
    	}
    }

When a synchronized block is executed, the object in parenthesis is locked and cannot be used by any other thread until the lock is released.

Each Java thread has its own memory and the JVM copies there variables from the main program memory. The keyword synchronize means to synch up the content of the main and thread's portions of memory. This ensures that each thread works with the most current value of the resource (in our case its dataToDisplay).

If you spot a group of Java programmers in a bar, after a couple of beers they may start using some mysterious words: monitor and mutex.

A monitor is just a piece of a synchronized code. We can say that one of our threads can enter a monitor and safely modify the variable dataToDisplay. While the first thread is working, another thread(s) may start waiting for this monitor.

Mutex means mutually exclusive, and this term also refers to the fact that threads may take turns accessing some program variable(s).

In this lesson you've learned one of the ways of treating more than one thread as a group, but this is not the only way. Java has a class java.lang.ThreadGroup that allows you to create and start a group of threads, control the threads within the group and check which threads are still active. You may also consider the method join() of the class Thread if one thread needs to wait for completion of another.

Threads can communicate with other Java objects using special methods wait(), notify() and notifyAll(), but this is going to be a topic of another lesson. Meanwhile, you can read more about threads in the Java Tutorial over here: http://java.sun.com/docs/books/tutorial/essential/threads/

More Stories By Yakov Fain

Yakov Fain is a co-founder of two software companies: Farata Systems and SuranceBay. He authored several technical books and lots of articles on software development. Yakov is Java Champion (https://java-champions.java.net). He leads leads Princeton Java Users Group. Two of Yakov's books will go in print this year: "Enterprise Web Development" (O'Reilly) and "Java For Kids" (No Starch Press).

Comments (3) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Slava Pestov 02/18/05 07:57:05 PM EST

Yakov, your last threads example has a race condition.

Consider this:

thread 1 executes: synchronized (this){ dataToDisplay.add(data); }.

then thread 2 executes: synchronized (this){ dataToDisplay.add(data); }.

then thread 1 executes: if (dataToDisplay.size()==2){ System.out.println(dataToDisplay); }

then thread 2 executes: if (dataToDisplay.size()==2){ System.out.println(dataToDisplay); }

That last System.out.println(dataToDisplay); executes twice, which is not what you intended.

Yakov Fain 02/04/05 11:41:26 AM EST

Yes, J2EE spec does not recommend it, but if you do it right everything works fine. Here's how this could be done

To control threads in a J2EE container use a thread pool (it's a singleton) and get threads from there. If you use J2SE 5.0, use the package java.util.concurrent (in particular, ThreadPoolExecutor). In J2SE 1.4 and below use an excellent concurrent package created by Doug Lea.

Disclaimer: It's just my personal opinion based on my prior experience with a pretty serious financial application. But I do not recommend you to violate J2EE spec.

Feldhacker 02/04/05 08:35:41 AM EST

Is a J2EE version of this example available? Since J2EE forbids explicit thread management, how would this be done on a web server?

@ThingsExpo Stories
The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities.
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists addressed this very serious issue of profound change in the industry.
Discussions about cloud computing are evolving into discussions about enterprise IT in general. As enterprises increasingly migrate toward their own unique clouds, new issues such as the use of containers and microservices emerge to keep things interesting. In this Power Panel at 16th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the state of cloud computing today, and what enterprise IT professionals need to know about how the latest topics and trends affect their organization.
SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner, Product Manager of the Omega DevCloud with KORE Telematics Inc., discussed the evolving requirements for developers as IoT matures and conducted a live demonstration of how quickly application development can happen when the need to comply wit...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Architect for the Internet of Things and Intelligent Systems, described how to revolutionize your archit...
It is one thing to build single industrial IoT applications, but what will it take to build the Smart Cities and truly society-changing applications of the future? The technology won’t be the problem, it will be the number of parties that need to work together and be aligned in their motivation to succeed. In his session at @ThingsExpo, Jason Mondanaro, Director, Product Management at Metanga, discussed how you can plan to cooperate, partner, and form lasting all-star teams to change the world and it starts with business models and monetization strategies.
Converging digital disruptions is creating a major sea change - Cisco calls this the Internet of Everything (IoE). IoE is the network connection of People, Process, Data and Things, fueled by Cloud, Mobile, Social, Analytics and Security, and it represents a $19Trillion value-at-stake over the next 10 years. In her keynote at @ThingsExpo, Manjula Talreja, VP of Cisco Consulting Services, discussed IoE and the enormous opportunities it provides to public and private firms alike. She will share what businesses must do to thrive in the IoE economy, citing examples from several industry sectors.
Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Opening Keynote at 16th Cloud Expo, Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, d...
There will be 150 billion connected devices by 2020. New digital businesses have already disrupted value chains across every industry. APIs are at the center of the digital business. You need to understand what assets you have that can be exposed digitally, what their digital value chain is, and how to create an effective business model around that value chain to compete in this economy. No enterprise can be complacent and not engage in the digital economy. Learn how to be the disruptor and not the disruptee.
Akana has released Envision, an enhanced API analytics platform that helps enterprises mine critical insights across their digital eco-systems, understand their customers and partners and offer value-added personalized services. “In today’s digital economy, data-driven insights are proving to be a key differentiator for businesses. Understanding the data that is being tunneled through their APIs and how it can be used to optimize their business and operations is of paramount importance,” said Alistair Farquharson, CTO of Akana.
Business as usual for IT is evolving into a "Make or Buy" decision on a service-by-service conversation with input from the LOBs. How does your organization move forward with cloud? In his general session at 16th Cloud Expo, Paul Maravei, Regional Sales Manager, Hybrid Cloud and Managed Services at Cisco, discusses how Cisco and its partners offer a market-leading portfolio and ecosystem of cloud infrastructure and application services that allow you to uniquely and securely combine cloud business applications and services across multiple cloud delivery models.
The enterprise market will drive IoT device adoption over the next five years. In his session at @ThingsExpo, John Greenough, an analyst at BI Intelligence, division of Business Insider, analyzed how companies will adopt IoT products and the associated cost of adopting those products. John Greenough is the lead analyst covering the Internet of Things for BI Intelligence- Business Insider’s paid research service. Numerous IoT companies have cited his analysis of the IoT. Prior to joining BI Intelligence, he worked analyzing bank technology for Corporate Insight and The Clearing House Payment...
In his keynote at 16th Cloud Expo, Rodney Rogers, CEO of Virtustream, discussed the evolution of the company from inception to its recent acquisition by EMC – including personal insights, lessons learned (and some WTF moments) along the way. Learn how Virtustream’s unique approach of combining the economics and elasticity of the consumer cloud model with proper performance, application automation and security into a platform became a breakout success with enterprise customers and a natural fit for the EMC Federation.
"Optimal Design is a technology integration and product development firm that specializes in connecting devices to the cloud," stated Joe Wascow, Co-Founder & CMO of Optimal Design, in this SYS-CON.tv interview at @ThingsExpo, held June 9-11, 2015, at the Javits Center in New York City.
SYS-CON Events announced today that CommVault has been named “Bronze Sponsor” of SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. A singular vision – a belief in a better way to address current and future data management needs – guides CommVault in the development of Singular Information Management® solutions for high-performance data protection, universal availability and simplified management of data on complex storage networks. CommVault's exclusive single-platform architecture gives companies unp...
Electric Cloud and Arynga have announced a product integration partnership that will bring Continuous Delivery solutions to the automotive Internet-of-Things (IoT) market. The joint solution will help automotive manufacturers, OEMs and system integrators adopt DevOps automation and Continuous Delivery practices that reduce software build and release cycle times within the complex and specific parameters of embedded and IoT software systems.
"ciqada is a combined platform of hardware modules and server products that lets people take their existing devices or new devices and lets them be accessible over the Internet for their users," noted Geoff Engelstein of ciqada, a division of Mars International, in this SYS-CON.tv interview at @ThingsExpo, held June 9-11, 2015, at the Javits Center in New York City.
Internet of Things is moving from being a hype to a reality. Experts estimate that internet connected cars will grow to 152 million, while over 100 million internet connected wireless light bulbs and lamps will be operational by 2020. These and many other intriguing statistics highlight the importance of Internet powered devices and how market penetration is going to multiply many times over in the next few years.
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet conditions, Dyn ensures traffic gets delivered faster, safer, and more reliably than ever.