Click here to close now.

Welcome!

Java IoT Authors: Plutora Blog, Carmen Gonzalez, Liz McMillan, Lori MacVittie, Elizabeth White

Related Topics: Java IoT, Weblogic, Linux Containers

Java IoT: Article

Java Basics: Introduction to Java Threads, Part 2

Internet Portals Like Yahoo, CNN, or Your Bank's Web Site Use Them

In the previous lesson www.sys-con.com/story/?storyid=46096&de=1 I've explained the basics of Java threads. This time we'll talk about using threads for creating a little more advanced programs.

I'm sure each of you have visited some of the major Internet portals like Yahoo, CNN or your bank's Web site. These portals usually display different types of information like News, Weather, Stock Market quotes, etc. Each of these info pieces appears on the screen instantaneously even though it's coming to the portal from different servers, i.e. the News server may be located in Washington and the stock market data come from New York (see Figure 1 below).

Let's say it takes 4 seconds to receive the news and 3 seconds to get the stock prices. If your program will do it in a sequence, it'll take you 7 seconds total, but why not do this in parallel and reduce the total time to 4 seconds? After all these servers have their own processors that can work in independently from each other! We are not going to discuss Web technologies here, but I'll show you how to spawn parallel processing using multi-threading, collect the returned data and display the results to the user in one shot.

Our program will consist of the following classes:

  • MyPortal that will spawn the threads and collect their returns in an ArrayList of strings. It'll print entire content of this array when all threads complete.
  • NewsServer that will run for 4 seconds and return a message "We have good and bad news";
  • StockServer that will run for 3 seconds and return a message "The stock market is on the rise!".
These threads do not contain any code that actually gets some news or market data. My goal is to show you how threads can communicate with other classes, and after this part works, it wont be difficult to replace the line that prints a static message with a method call that actually connects to the Internet and gets the data as it was explained in the lesson on getting data from the Internet:.

The class in Listing 1 creates and starts two threads (news and stocks) and goes to sleep for 10 seconds just to keep the program alive for a while. Please note that the class MyPortal also passes to each thread a reference to its instance so the threads know were to return the results. After each thread completes, it returns the result to MyPortal by calling its method submitResult(). Each of the resulting strings is being added to the ArrayList dataToDisplay, and when its size grows to two elements MyPortal prints the content of content the collection dataToDisplay. A little later I'll explain why such use of an ArrayList may not be the best solution for this example.

Listing 1. The source code of the class MyPortal


import java.util.ArrayList;
public class MyPortal {
	ArrayList dataToDisplay = new ArrayList();
    public static void main(String args[]){
    	MyPortal mp =new MyPortal();
    	// Spawn the threads and pass them the referennce
    	// to the instance of MyPortal
    	NewsServer myNews = new NewsServer(mp);
    	Thread newsThread = new Thread(myNews);

    	StockServer myStocks = new StockServer(mp);
    	Thread stockThread = new Thread(myStocks);

    	//Start the threads
    	newsThread.start();
    	stockThread.start();

    	try {
    		System.out.println("MyPortal is sleeping...!");
			Thread.sleep(10000); // wait for 10 sec 
		} catch (InterruptedException e) {
			e.printStackTrace();
		}

		System.out.println("Good bye!");
	}

    // Add the data returned by a thread to collection
    public void submitResult(String data){
    	dataToDisplay.add(data);

    	// Print the data if both threads have submitted the data
    	// (a buggy version)
    	if (dataToDisplay.size()==2){
        	System.out.println(dataToDisplay);
    	}
    }
}

The output of this program looks as follows:

MyPortal is sleeping...
[The stock market is on the rise!, We have good and bad news]
Good bye!

The first line will be printed almost immediately, the second line in 4 seconds and the third one in 10 seconds.

Listing 2. The source code of the class StockServer


public class StockServer implements Runnable {
    MyPortal papa;
    // Constructor
    StockServer(MyPortal parent){
       	papa=parent;
    }

    public void run() {
	// Sleep for 3 seconds to emulate some processing
	// and return a string with the market data to the parent
 	try {
		Thread.sleep(3000);
		papa.submitResult("The stock market is on the rise!");
	} catch (InterruptedException e) {
			e.printStackTrace();
	}
    }
}

Listing 3. The source code of the class NewsServer


public class NewsServer implements Runnable {
    MyPortal papa;

    // Constructor
    NewsServer(MyPortal parent){
       	papa=parent;
    }

	public void run() {
	// Sleep for 4 seconds to emulate some processing
	// and return a string with the news to the parent

		try {
			Thread.sleep(4000);
			papa.submitResult("We have  good and bad news");
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
	}
}

The thread classes from Listing 2 and Listing 3 store the references to the parent class MyPortal in the variable papa. Each of the threads just sleeps for a specified number of seconds, wakes up and passes an appropriate text to papa.

Please note, that even on a single processor's machine the total execution time of our example is just a little more than 4 seconds. The reason is that our threads where "sleeping in parallel" and did not compete for the processor's time. But if you replace the sleeping part with a loop that performs some calculations, the timing will be different on a single processor machine: the program will run about 7 seconds. If you have a dual processor machine, you'll cut the processing time to 4 seconds again.

Thread Synchronization. A Race Condition.

When you write a multithreaded application you should consider possibility of a so-called race condition. This is a situation when you may get unpredictable results because multiple threads access a resource (i.e. a variable) at the same time. In our example two threads are calling the same method submitResult() which in turn accesses the variable dataToDisplay to add some data to it and check the size of this collection. Imagine that two or more threads finish their work at the same time. Let's look at a possible sequence of events:

  1. The NewsServer calls the method submitResult(). The size of dataToDisplay is 0.
  2. The StockServer calls the method submitResult() a split second later. The size of dataToDisplay is 0.
  3. The NewsServer grabs a zero-element dataToDisplay and starts adding its string there as a first element.
  4. The StockServer grabs a zero-element dataToDisplay (because the NewsServer has not finished adding its first the element yet) and starts adding its string there as a first element.
  5. After both threads are done, the dataToDisplay may wind up with having one element because the first thread's string has been overwritten by the second one. In this is the case, the size of the dataToDisplay will remain one and MyPortal will never print the news and stock data.
Since the probability of this situation is really small, your program may work properly for years and all of a sudden produce unexpected results. Bugs like this one are not easy to discover.

To avoid race conditions, the code that needs to access a "sensitive" variable must be locked (become unavailable for other threads) for the time when one thread works with it. When the first thread completes, the lock is released and another thread can get a hold of this variable/resource. You can arrange such locking either by using a Java keyword synchronized, or by using Java objects that are internally synchronized.

In our portal example, you can simply use the class Vector instead of ArrayList:

Vector dataToDisplay = new Vector();

Vector objects are internally synchronized in Java, and the second thread won't be able to add a string to the dataToDisplay collection until the first thread is done. Obviously, there is a price to pay for this convenience: synchronized objects are a little bit slower than non-synchronized ones.

The other solution is to put an explicit lock for a piece of code that must be completed without any interruption by other threads. For example, if you'll add the keyword synchronized to the signature of the method submitResult(), the second thread will not be able to call this method, if the first one is still executing it:

public synchronized void submitResult(String data){?}

You can also say that a lock is placed on the entire method submitResult().

You should try to minimize the locking time to avoid slowing down your programs. Java allows you to synchronize just a small portion of the code, which is more preferable than synchronizing an entire method.:


    public void submitResult(String data){
 
    	synchronized (this){
    	  dataToDisplay.add(data);
    	}

    	if (dataToDisplay.size()==2){
        	System.out.println(dataToDisplay);
    	}
    }

When a synchronized block is executed, the object in parenthesis is locked and cannot be used by any other thread until the lock is released.

Each Java thread has its own memory and the JVM copies there variables from the main program memory. The keyword synchronize means to synch up the content of the main and thread's portions of memory. This ensures that each thread works with the most current value of the resource (in our case its dataToDisplay).

If you spot a group of Java programmers in a bar, after a couple of beers they may start using some mysterious words: monitor and mutex.

A monitor is just a piece of a synchronized code. We can say that one of our threads can enter a monitor and safely modify the variable dataToDisplay. While the first thread is working, another thread(s) may start waiting for this monitor.

Mutex means mutually exclusive, and this term also refers to the fact that threads may take turns accessing some program variable(s).

In this lesson you've learned one of the ways of treating more than one thread as a group, but this is not the only way. Java has a class java.lang.ThreadGroup that allows you to create and start a group of threads, control the threads within the group and check which threads are still active. You may also consider the method join() of the class Thread if one thread needs to wait for completion of another.

Threads can communicate with other Java objects using special methods wait(), notify() and notifyAll(), but this is going to be a topic of another lesson. Meanwhile, you can read more about threads in the Java Tutorial over here: http://java.sun.com/docs/books/tutorial/essential/threads/

More Stories By Yakov Fain

Yakov Fain is a co-founder of two software companies: Farata Systems and SuranceBay. He authored several technical books and lots of articles on software development. Yakov is Java Champion (https://java-champions.java.net). He leads leads Princeton Java Users Group. Two of Yakov's books will go in print this year: "Enterprise Web Development" (O'Reilly) and "Java For Kids" (No Starch Press).

Comments (3) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Slava Pestov 02/18/05 07:57:05 PM EST

Yakov, your last threads example has a race condition.

Consider this:

thread 1 executes: synchronized (this){ dataToDisplay.add(data); }.

then thread 2 executes: synchronized (this){ dataToDisplay.add(data); }.

then thread 1 executes: if (dataToDisplay.size()==2){ System.out.println(dataToDisplay); }

then thread 2 executes: if (dataToDisplay.size()==2){ System.out.println(dataToDisplay); }

That last System.out.println(dataToDisplay); executes twice, which is not what you intended.

Yakov Fain 02/04/05 11:41:26 AM EST

Yes, J2EE spec does not recommend it, but if you do it right everything works fine. Here's how this could be done

To control threads in a J2EE container use a thread pool (it's a singleton) and get threads from there. If you use J2SE 5.0, use the package java.util.concurrent (in particular, ThreadPoolExecutor). In J2SE 1.4 and below use an excellent concurrent package created by Doug Lea.

Disclaimer: It's just my personal opinion based on my prior experience with a pretty serious financial application. But I do not recommend you to violate J2EE spec.

Feldhacker 02/04/05 08:35:41 AM EST

Is a J2EE version of this example available? Since J2EE forbids explicit thread management, how would this be done on a web server?

@ThingsExpo Stories
Internet of Things (IoT) will be a hybrid ecosystem of diverse devices and sensors collaborating with operational and enterprise systems to create the next big application. In their session at @ThingsExpo, Bramh Gupta, founder and CEO of robomq.io, and Fred Yatzeck, principal architect leading product development at robomq.io, discussed how choosing the right middleware and integration strategy from the get-go will enable IoT solution developers to adapt and grow with the industry, while at the same time reduce Time to Market (TTM) by using plug and play capabilities offered by a robust IoT ...
17th Cloud Expo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises are using some form of XaaS – software, platform, and infrastructure as a service.
SYS-CON Events announced today that Secure Infrastructure & Services will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Secure Infrastructure & Services (SIAS) is a managed services provider of cloud computing solutions for the IBM Power Systems market. The company helps mid-market firms built on IBM hardware platforms to deploy new levels of reliable and cost-effective computing and high availability solutions, leveraging the cloud and the benefits of Infrastructure-as-a-Service (IaaS...
"We have a tagline - "Power in the API Economy." What that means is everything that is built in applications and connected applications is done through APIs," explained Roberto Medrano, Executive Vice President at Akana, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
The 17th International Cloud Expo has announced that its Call for Papers is open. 17th International Cloud Expo, to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, APM, APIs, Microservices, Security, Big Data, Internet of Things, DevOps and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal today!
The 5th International DevOps Summit, co-located with 17th International Cloud Expo – being held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real results. Among the proven benefits, DevOps is corr...
The basic integration architecture, as defined by ESBs, hasn’t changed for more than a decade. Most cloud integration providers still rely on an ESB architecture and their proprietary connectors. As a result, enterprise integration projects suffer from constraints of availability and reliability of these connectors that are not re-usable across other integration vendors. However, the rapid adoption of APIs and almost ubiquitous availability of APIs amongst most SaaS and Cloud applications are rapidly redefining traditional integration approaches and their reliance on proprietary connectors. ...
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists addressed this very serious issue of profound change in the industry.
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi’s VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context wi...
Internet of Things is moving from being a hype to a reality. Experts estimate that internet connected cars will grow to 152 million, while over 100 million internet connected wireless light bulbs and lamps will be operational by 2020. These and many other intriguing statistics highlight the importance of Internet powered devices and how market penetration is going to multiply many times over in the next few years.
WebRTC converts the entire network into a ubiquitous communications cloud thereby connecting anytime, anywhere through any point. In his session at WebRTC Summit,, Mark Castleman, EIR at Bell Labs and Head of Future X Labs, will discuss how the transformational nature of communications is achieved through the democratizing force of WebRTC. WebRTC is doing for voice what HTML did for web content.
To many people, IoT is a buzzword whose value is not understood. Many people think IoT is all about wearables and home automation. In his session at @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, discussed some incredible game-changing use cases and how they are transforming industries like agriculture, manufacturing, health care, and smart cities. He will discuss cool technologies like smart dust, robotics, smart labels, and much more. Prepare to be blown away with a glimpse of the future.
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Architect for the Internet of Things and Intelligent Systems, described how to revolutionize your archit...
It is one thing to build single industrial IoT applications, but what will it take to build the Smart Cities and truly society-changing applications of the future? The technology won’t be the problem, it will be the number of parties that need to work together and be aligned in their motivation to succeed. In his session at @ThingsExpo, Jason Mondanaro, Director, Product Management at Metanga, discussed how you can plan to cooperate, partner, and form lasting all-star teams to change the world and it starts with business models and monetization strategies.
SYS-CON Events announced today that BMC will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. BMC delivers software solutions that help IT transform digital enterprises for the ultimate competitive business advantage. BMC has worked with thousands of leading companies to create and deliver powerful IT management services. From mainframe to cloud to mobile, BMC pairs high-speed digital innovation with robust IT industrialization – allowing customers to provide amazing user experiences with optimized IT per...
There will be 150 billion connected devices by 2020. New digital businesses have already disrupted value chains across every industry. APIs are at the center of the digital business. You need to understand what assets you have that can be exposed digitally, what their digital value chain is, and how to create an effective business model around that value chain to compete in this economy. No enterprise can be complacent and not engage in the digital economy. Learn how to be the disruptor and not the disruptee.
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will addresses this very serious issue of profound change in the industry.
Business as usual for IT is evolving into a "Make or Buy" decision on a service-by-service conversation with input from the LOBs. How does your organization move forward with cloud? In his general session at 16th Cloud Expo, Paul Maravei, Regional Sales Manager, Hybrid Cloud and Managed Services at Cisco, discusses how Cisco and its partners offer a market-leading portfolio and ecosystem of cloud infrastructure and application services that allow you to uniquely and securely combine cloud business applications and services across multiple cloud delivery models.
In his General Session at 16th Cloud Expo, David Shacochis, host of The Hybrid IT Files podcast and Vice President at CenturyLink, investigated three key trends of the “gigabit economy" though the story of a Fortune 500 communications company in transformation. Narrating how multi-modal hybrid IT, service automation, and agile delivery all intersect, he will cover the role of storytelling and empathy in achieving strategic alignment between the enterprise and its information technology.
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists peeled away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you'll have no problem fillin...