Welcome!

Java IoT Authors: Tim Hinds, Elizabeth White, Yeshim Deniz, Douglas Lyon, Stackify Blog

Related Topics: Agile Computing

Agile Computing: Blog Feed Post

[berkman] Stephen Wolfram - WolframAlpha.com

Stephen Wolfram is giving at talk at Harvard about his WolframAlpha site, which will launch in May

Stephen Wolfram is giving at talk at Harvard about his WolframAlpha site, which will launch in May. Aim: “Find a way to make computable the systematic knowledge we’ve accumulated.”

The two big projects he’s worked on have made this possible. Mathematica (he’s worked on it for 23 yrs) makes it possible to do complex math and symbolic language manipulation. A New Kind of Science (NKS) has made it possible that it’s possible to understand much about the world computationally, often with very simple rules. So, WA uses NKS principles and the Mathematica engine. He says he’s in this project for the long term.

NOTE: Live-blogging.Posted without re-reading

Getting things wrong. Missing points. Omitting key information. Introducing artificial choppiness. Over-emphasizing small matters. Paraphrasing badly. Not running a spellpchecker. Mangling other people’s ideas and words. You are warned, people.

You type in a question and you get back in answers. You can type in math and get back plots, etc. Type in “dgp france” and get back the answer, a graph of the history of the shows histogram of GDP.

“GDP of france / italy.”

“internet users in europe” shows histogram, list of highest and lowers, etc.

“Weather in Lexington, MA” “Weather lexington,ma 11/17/92″ “Weather lexington, MA moscow” shows comparison of weather and location.

“5 miles/sec” returns useful conversions and comparisons.

“$17/hr” converts to per week, per month, etc., plus conversion to other currencies.

“4000 words” gives a list of typical typing speeds, the length in characters, etc.

“333 gm gold” gives the mass, the commodity price, the heat capacity, etc.

“H2S04″ gives an illustration of the molecule, as well as the expected info about mass, etc.

“Caffeine mol wt/ water” gives a result of moelcular weights divided.

“decane 2 atm 50 C” shows what decane is like at two atmosphers and at 50 C, e.g., phase, density, boiling point, etc.

“LDL 180″: Where your cholesterol level is against the rest of the population.

“life expctancy male age 40 italy”: distribution of survival curve, history of that life expectancy over time. Add “1933″ and adds specificity.

“5′8″ 160 lbs”: Where in the distribution of body mass index

“ATTGTATACTAA”: Where that sequence matches the human genome

“MSFT”: Real time Microsoft quote and other financial performance info. “MSFT sun” assumes that “sun” refers to stock info about Sun Microsystems. [how?]

“ARM 20 yr mortgage”: payment of monthly tables, etc. Let’s you input the loan amount.

“D# minor”: Musical notation, plays the D# minor scale

“red + yellow”: Color swatch, html notation

“www.apple.com”: Info about Apple, history of page views

“lawyers”: Number employed, average wage

“France fish production”: How many metric tons produced, pounds per second which is 1/5 the rate trash is produced in NYC

“france fish production vs. poland”: charts and diagrams

“2 c orange juice”: nutritional info

“2 c orange juice + 1 slice cheddar cheese”: nutritional label

“a__a__n”: English words that match

“alan turing kurt godel”: Table of info about them

“weather princeton, nuy when kurt godel died”: the answer

“uncle’s uncle’s grandson’s grandson”: family tree, probabiilty of those two sharing genetic material

“5th largest country in europe”

“gdp vs. railway length in europe”:

“hurricane andrew”: Data, map

“andrew”: Popularity of the name, diagrammed.

“president of brazil in 1922″

“tide NYC 11/5/2015″

“ten flips 4 heads”: probability

“3,7,15,31,63…”: Figures out and plots next in the sequence and possible generating function

“4,1 knot”: diagram of knot

“next total solar eclipse chicago”: Next one visible in Chicago

“ISS”: International Space Station info and map

It lets you select alternatives in case of ambiguities.

“We’re trying to computer things.” We have tools that let us find things. But when you have a particular question, it’s unlikely that you’ll find that specific answer written down. WA therefore tries to compute answers. “The objective is to reach expert level knowledge across a very wide range of domains.”

Four big pieces to WA:

1. Data curation. WA has trillions of people of curated data. It gets it from free data or licensed data. Partially human partially automated system cleans it up and tries to correlate it. “A lot can be done automatically…At some point, you need a human domain expert in the middle of it.” There are people inside the company and a network of others who do the curation.

2. The algorithms. Take equations, etc., from all over. “There are finite numbers of methods that have been discovered in the history of science.” There are 5-6 millions lines of Mathematica code at work.

3. Linguistic analysis to understand the inputs. “There’s no manual, no documentation. You get to interact it with just how you think about things.” They’re doing the opposite of natural language processing which usually tries to understand millions of pages. WA’s problem is mapping a relatively small set of short human inputs to what the system knows about. NKS helps with this. It turns out that ambiguity is not nearly as big a problem as we thought.

4. Automated presentation. What do yo show people so they can cognitively grasp it? “Algorithmic presentation technology … tries to pick out what is important.” Mathematica has worked on “computational aesthetics” for years.

He says that have at least a reasonable start on about 90% of the shelves in a typical reference library.

Q: (andy orem) What do you do about the inconsistencies of data? We don’t know how inconsistent it was and what algorithms you used.
A: We give source info. “We’re trying to create an authoritative source for data.” We know about ranges of values; we’ll make that information available. “But by the time you have a lot of footnotes on a number, there’s not a lot you can do with that number.” “We do try to give footnotes.”

Q: How do you keep current?
A: Lots of people want to make their data available. We hope to make a streamlined, formalized way for people to contribute the data. We want to curate it so we can stand by it.

Q: [me] Openness? Of API, of metadata, of contributions of interesting comparisons, etc.
A: We’ll do a variety of levels of API. First: presentation level: put output on their pages. Second, XML-level so people can mash it up. Third level: individual results from the databases and from the computations. [He shows a first draft of the api] You can get as the symbolic expressions that Mathematica is based on. We hope to have a personalizable version. Metadata: When we open up our data repository mechanisms so people can contribute, some of our ontology will be exposed.

How about in areas where people disagree? If a new universe model comes out from Stanford, does someone at WolframAlpha have to say yes and put it in?
A: Yes
Q: How many people?
A: It’s been 150 for a long time. Now it’s 250. It’s probably going to be a thousand people.

Q: Who is this for?
A: It’s for expert knowledge for anyone who needs it.

Q: Business model?
A: The site will be free. Corporate sponsors will put ads on the side. We’re trying to figure out how to ingest vendor info when it’s relevant, and how to present it on the site. There will also be a professional version for people who are doing a lot of computation, want to put in their own data…

Q: Can you define the medical and population databases to get the total mass of people in England.
A: We could integrate those databases, but we don’t have that now. We’re working on “splat pages” you get when it doesn’t work. It should tell you what it does know.

Q: What happens when there is no answer, e.g., 55th largest state in the US?
A: It says it doesn’t know.

Q: [eszter] For some data, there are agreed-upon sources. For some there aren’t. How do you choose sources?
A: That’s a key problem in doing data curation. “How do we do it? We try to do the best job we can.” Use experts. Assess. Compare. [This is a bigger issue than Wolfram apparently thinks where data models are political. E.g., Eszter Hargittai, who is sitting next to me, points out "How many Internet users are there?" is a highly controversial question.] We give info about what our sources are.

Q: Technologically, where do you want to focus in the future?
A: All 4 areas need to be pushed forward.

Q: How does this compare to the Semantic Web?
A: Had the Web already had been semantically tagged, this product would have been far far easier, although keep in mind that much of the data in WA comes from private databases. We have a sophisticated ontology. We didn’t create the ontology top-down. It’s mostly bottom-up. We have domains. We have ontologies for them. We merge them together. “I hope as we expose some of our data repository methods, it will make it easier to do some Semantic Web kind of things. People will be able to line data up.”

Q: When can we look at the formal specifications of these ontologies? When can we inject our own?
A: It’s all represented in clean Mathematica code. Knitting new knowledge into the system is tricky because our UI is natural language, which is messy. E.g., “There’s a chap who goes by the name Fifty Cent.” You have to be careful.

Q: What reference source tells you if Palestine exists…?
A: In cases like this, we say “Assuming Case A or B.” There are holes in the data. I’m hoping people will be motivated to fill them in. Then there’s the question of the extent to which we can build expert communities. We don’t know the best way to do this. Lots of interesting ideas.

How about pop culture?
A: Pop culture info is much shallower computationally. (”Britney Spears” just gets her name, birthdate, and birthplace. No music, no photos, nothing about her genre, etc.) (”Meaning of life” does answer “42″)

Q: Compare with CYC? (A common sense reasoning system)
A: CYC deals with human reasoning. That’s not the best method for figuring out physics, etc. “We can do the non-human parts of reasoning really well.”

Q: [couldn't hear the question]
A: The best way to debug it is not necessarily to inspect the code but to inspect the results. People reading code is less efficient than automated systems.

Q: Will it be integrated into Mathematica?
A: A future version will let you type WA data into Mathematica.

Q: How much work do you have to do on the NLP sound? Your searches used a special lexicon…
A: We don’t know. We have a daily splat call to see what types of queries have failed. We’re pretty good at removing linguistic fluff. People drop the fluff pretty quickly after they’ve been using WA for a while.

Q: (free software foundation) How does this change the landscape for open access? There’s info in commercial journals…
A: When there’s a proprietary database, the challenge is making the right deals. People will not be able to take out of our system all the data that we put into it. We have yet to learn all of the issues that will come up.

Q: Privacy?
A: We’re dealing with public data. We could do people search, but, personally, I don’t want to.

Q: What would you think of a more Wikipedia-like model? Do you worry about a competitor making a wiki data that is completely open and grows faster?
A: That’d be great. Making WA is hard. It’s not just a matter of shoveling data in. Wikipedia is fantastic and I use it all the time, but it’s gone in particular directions. When you’re looking for systematic data there, even if people put in systematic data — e.g., 300 pages about chemicals — over the course of time, the data gets dirty. You can’t compute from it.

Q: How about if Google starts presenting your results in response to queries?
A: We’re looking for synergies But we’re generating these on the fly; it won’t get indexed.

Q: I wonder how universities will find a place for this.
A: Very interesting question. Generating hard data is hard and useful, although universities often prefer higher levels of synthesis and opinion. [Loose paraphrase!] Leibniz had this nailed: Take any human argument and find a way to mechanically compute it. [Tags: ]

Read the original blog entry...

More Stories By David Weinberger

David is the author of JOHO the blog (www.hyperorg.com/blogger). He is an independent marketing consultant and a frequent speaker at various conferences. "All I can promise is that I will be honest with you and never write something I don't believe in because someone is paying me as part of a relationship you don't know about. Put differently: All I'll hide are the irrelevancies."

@ThingsExpo Stories
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
BnkToTheFuture.com is the largest online investment platform for investing in FinTech, Bitcoin and Blockchain companies. We believe the future of finance looks very different from the past and we aim to invest and provide trading opportunities for qualifying investors that want to build a portfolio in the sector in compliance with international financial regulations.
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
We are given a desktop platform with Java 8 or Java 9 installed and seek to find a way to deploy high-performance Java applications that use Java 3D and/or Jogl without having to run an installer. We are subject to the constraint that the applications be signed and deployed so that they can be run in a trusted environment (i.e., outside of the sandbox). Further, we seek to do this in a way that does not depend on bundling a JRE with our applications, as this makes downloads and installations rat...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
Digital Transformation (DX) is not a "one-size-fits all" strategy. Each organization needs to develop its own unique, long-term DX plan. It must do so by realizing that we now live in a data-driven age, and that technologies such as Cloud Computing, Big Data, the IoT, Cognitive Computing, and Blockchain are only tools. In her general session at 21st Cloud Expo, Rebecca Wanta explained how the strategy must focus on DX and include a commitment from top management to create great IT jobs, monitor ...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...