Click here to close now.

Welcome!

Java Authors: Carmen Gonzalez, Elizabeth White, Roger Strukhoff, Liz McMillan, Navrup Johal

Related Topics: Java

Java: Article

Next-Gen Concurrency in Java: The Actor Model

Multiple concurrent processes can communicate with each other without needing to use shared state variables

At a time where the clock speeds of processors have been stable over the past couple of years, and Moore's Law is instead being applied by increasing the number of processor cores, it is getting more important for applications to use concurrent processing to reduce run/response times, as the time slicing routine via increased clock speed will no longer be available to bail out slow running programs.

Carl Hewitt proposed the Actor Model in 1973 as a way to implement unbounded nondeterminism in concurrent processing. In many ways this model was influenced by the packet switching mechanism, for example, no synchronous handshake between sender and receiver, inherently concurrent message passing, messages may not arrive in the order they were sent, addresses are stored in messages, etc.

The main difference between this model and most other parallel processing systems is that it uses message passing instead of shared variables for communication between concurrent processes. Using shared memory to communicate between concurrent processes requires the application of some form of locking mechanism to coordinate between threads, which may give rise to live locks, deadlocks, race conditions and starvation.

Actors are the location transparent primitives that form the basis of the actor model. Each actor is associated with a mailbox (which is a queue with multiple producers and a single consumer) where it receives and buffers messages, and a behavior that is executed as a reaction to a message received. The messages are immutable and may be passed between actors synchronously or asynchronously depending on the type of operation being invoked. In response to a message that it receives, an actor can make local decisions, create more actors, send more messages, and designate how to respond to the next message received. Actors never share state and thus don't need to compete for locks for access to shared data.

The actor model first rose to fame in the language Erlang, designed by Ericcson in 1986. It has since been implemented in many next-generation languages on the JVM such as Scala, Groovy and Fantom. It is the simplicity of usage provided via a higher level of abstraction that makes the actor model easier to implement and reason about.

It's now possible to implement the actor model in Java, thanks to the growing number of third-party concurrency libraries advertising this feature. Akka is one such library, written in Scala, that uses the Actor model to simplify writing fault-tolerant, highly scalable applications in both Java and Scala.

Implementation
Using Akka, we shall attempt to create a concurrent processing system for loan request processing in a bank as can be seen in the Figure 1.

Figure 1

The system consists of four actors:

  1. The front desk - which shall receive loan requests from the customers and send them to the back office for processing. It shall also maintain the statistics of the number of loans accepted/rejected and print a report detailing the same on being asked to do so.
  2. The back office - which shall sort the loan requests into personal loans and home loans, and send them to the corresponding accountant for approval/rejection.
  3. The personal loan accountant - who shall process personal loan requests, including approving/rejecting the requests, carrying out credit history checks and calculating the rate of interest.
  4. The home loan accountant - who shall process home loan requests, including approving/rejecting the requests, carrying out credit history checks and calculating the rate of interest.

To get started, download the version 2.0 of Akka for Java from http://akka.io/downloads and add the jars present in ‘akka-2.0-RC4\lib' to the classpath.

Next, create a new Java class "Bank.java" and add the following import statements :

import akka.actor.ActorRef;

import akka.actor.ActorSystem;

import akka.actor.Props;

import akka.actor.UntypedActor;

import akka.routing.RoundRobinRouter;

Now, create a few static nested classes under ‘Bank' that will act as messages (DTOs) and be passed to actors.

1. ‘LoanRequest' will contain the following elements and their corresponding getters/setters:

int requestedLoan;
int
accountBalance;

2. ‘PersonalLoanRequest' will extend ‘LoanRequest' and contain the following element and its corresponding getter:

final static String type="Personal";

3. ‘HomeLoanRequest' will extend ‘LoanRequest' and contain the following element and its corresponding getter:

final static String type="Home";

4. ‘LoanReply' will contain the following elements and their corresponding getters/setters:

String type;
boolean
approved;
int
rate;

Next, create a static nested class ‘PersonalLoanAccountant' under ‘Bank'.

public static class PersonalLoanAccountant extends UntypedActor {
public
int rateCaluclation(int requestedLoan, int accountBalance) {
if
(accountBalance/requestedLoan>=2)
return
5;
else

return
6;
}

public
void checkCreditHistory() {
for
(int i=0; i<1000; i++) {
continue
;
}
}
public
void onReceive(Object message) {
if
(message instanceof PersonalLoanRequest) {
PersonalLoanRequest request=PersonalLoanRequest.class.cast(message);
LoanReply reply = new LoanReply();
reply.setType(request.getType());
if
(request.getRequestedLoan()<request.getaccountBalance()) {
reply.setApproved(true);
reply.setRate(rateCaluclation(request.getRequestedLoan(), request.getaccountBalance()));
checkCreditHistory();
}
getSender().tell(reply);
} else {
unhandled(message);
}
}
}

The above class  serves as an actor in the system. It extends the ‘UntypedActor' base class provided by Akka and must define its ‘onReceive‘ method. This method acts as the mailbox and receives messages from other actors (or non-actors) in the system. If the message received is of type 'PersonalLoanRequest', then it can be processed by approving/rejecting the loan request, setting the rate of interest and checking the requestor's credit history. Once the processing is complete, the requestor uses the sender's reference (which is embedded in the message) to send the reply (LoanReply) to the requestor via the ‘getSender().tell()' method.

Now, create a similar static nested class ‘HomeLoanAccountant' under ‘Bank'

public static class HomeLoanAccountant extends UntypedActor {
public
int rateCaluclation(int requestedLoan, int accountBalance) {
if
(accountBalance/requestedLoan>=2)
return
7;
else

return
8;
}

public
void checkCreditHistory() {
for
(int i=0; i<2000; i++) {
continue
;
}
}
public
void onReceive(Object message) {
if
(message instanceof HomeLoanRequest) {
HomeLoanRequest request=HomeLoanRequest.class.cast(message);
LoanReply reply = new LoanReply();
reply.setType(request.getType());
if
(request.getRequestedLoan()<request.getaccountBalance()) {
reply.setApproved(true);
reply.setRate(rateCaluclation(request.getRequestedLoan(), request.getaccountBalance()));
checkCreditHistory();
}
getSender().tell(reply);
} else {
unhandled(message);
}
}
}

Now, create a static nested class ‘BackOffice' under ‘Bank':

public static class BackOffice extends UntypedActor {

ActorRef personalLoanAccountant=getContext().actorOf(new Props(PersonalLoanAccountant.class).withRouter(new RoundRobinRouter(2)));
ActorRef homeLoanAccountant=getContext().actorOf(new Props(HomeLoanAccountant.class).withRouter(new RoundRobinRouter(2)));

public void onReceive(Object message) {
if
(message instanceof PersonalLoanRequest) {
personalLoanAccountant.forward(message, getContext());
} else if (message instanceof HomeLoanRequest) {
homeLoanAccountant.forward(message, getContext());
} else {
unhandled(message);
}
}

}

The above class serves as an actor in the system and is purely used to route the incoming messages to PersonalLoanAccountant or HomeLoanAccountant, based on the type of message received. It defines actor references ‘personalLoanAccountant' and ‘homeLoanAccountant' to ‘PersonalLoanAccountant.class' and ‘HomeLoanAccountant.class', respectively. Each of these references initiates two instances of the actor it refers to and attaches a round-robin router to cycle through the actor instances. The ‘onReceive' method checks the type of the message received and forwards the message to either ‘PersonalLoanAccountant' or ‘HomeLoanAccountant' based on the message type. The ‘forward()' method helps ensure that the reference of the original sender is maintained in the message, so the receiver of the message (‘PersonalLoanAccountant' or ‘HomeLoanAccountant') can directly reply back to the message's original sender.

Now, create a static nested class ‘FrontDesk' under ‘Bank':

public static class FrontDesk extends UntypedActor {
int
approvedPersonalLoans=0;
int
approvedHomeLoans=0;
int
rejectedPersonalLoans=0;
int
rejectedHomeLoans=0;

ActorRef backOffice=getContext().actorOf(
new Props(BackOffice.class), "backOffice");

public
void maintainLoanApprovalStats(Object message) {
LoanReply reply = LoanReply.class.cast(message);
if
(reply.isApproved()) {
System.out.println(reply.getType()+" Loan Approved"+" at "+reply.getRate()+"% interest.");
if
(reply.getType().equals("Personal"))
++approvedPersonalLoans;
else
if(reply.getType().equals("Home"))
++approvedHomeLoans;
} else {
System.out.println(reply.getType()+" Loan Rejected");
if
(reply.getType().equals("Personal"))
++rejectedPersonalLoans;
else
if(reply.getType().equals("Home"))
++rejectedHomeLoans;
}
}

public void printLoanApprovalStats() {
System.out.println("--- REPORT ---");
System.out.println("Personal Loans Approved : "+approvedPersonalLoans);
System.out.println("Home Loans Approved : "+approvedHomeLoans);
System.out.println("Personal Loans Rejected : "+rejectedPersonalLoans);
System.out.println("Home Loans Rejected : "+rejectedHomeLoans);
}
public
void onReceive(Object message) {
if
(message instanceof LoanRequest) {
backOffice.tell(message, getSelf());
} else if (message instanceof LoanReply) {
maintainLoanApprovalStats(message);
} else if(message instanceof String && message.equals("printLoanApprovalStats")) {
printLoanApprovalStats();
getContext().stop(getSelf());
} else {
unhandled(message);
}
}
}

The above class serves as the final actor in the system. It creates a reference ‘backOffice' to the actor ‘BackOffice.class'. If the message received is of type ‘LoanRequest', it sends the message to ‘BackOffice' via the method ‘backOffice.tell()', which takes a message and the reference to the sender (acquired through the method ‘getSelf()') as arguments. If the message received is of type ‘LoanReply', it updates the counters to maintain the approved/rejected counts. If the message received is "printLoanApprovalStats", it prints the stats stored in the counters, and then proceeds to stop itself via the method ‘getContext().stop(getSelf())'. The actors follow a pattern of supervisor hierarchy, and thus this command trickles down the hierarchy chain and stops all four actors in the system.

Finally, write a few methods under ‘Bank' to submit requests to the ‘FrontOffice':

public static void main(String[] args) throws InterruptedException {
ActorSystem system = ActorSystem.create("bankSystem");
ActorRef frontDesk = system.actorOf(new Props(FrontDesk.class), "frontDesk");
submitLoanRequests
(frontDesk);
Thread.sleep(1000);
printLoanApprovalStats
(frontDesk);
system.shutdown();
}

public
static PersonalLoanRequest getPersonalLoanRequest() {
int
min=10000; int max=50000;
int
amount=min + (int)(Math.random() * ((max - min) + 1));
int
balance=min + (int)(Math.random() * ((max - min) + 1));
return
(new Bank()).new PersonalLoanRequest(amount, balance);
}

public
static HomeLoanRequest getHomeLoanRequest() {
int
min=50000; int max=90000;
int
amount=min + (int)(Math.random() * ((max - min) + 1));
int
balance=min + (int)(Math.random() * ((max - min) + 1));
return
(new Bank()).new HomeLoanRequest(amount, balance);
}

public static void submitLoanRequests(ActorRef frontDesk) {
for
(int i=0;i<1000;i++) {
frontDesk.tell(getPersonalLoanRequest());
frontDesk.tell(getHomeLoanRequest());
}
}

public static void printLoanApprovalStats(ActorRef frontDesk) {
frontDesk.tell("printLoanApprovalStats");
}

The method ‘main' creates an actor system ‘system' using the method ‘ActorSystem.create()'. It then creates a reference ‘frontDesk' to the actor ‘FrontDesk.class'. It uses this reference to send a 1000 requests each of types ‘PersonalLoanRequest' and ‘HomeLoanRequest' to ‘FrontDesk'. It then sleeps for a second, following which it sends the message "printLoanApprovalStats" to ‘FrontDesk'. Once done, it shuts down the actor system via the method ‘system.shutdown()'.

Conclusion
Running the above code will create a loan request processing system with concurrent processing capabilities, and all this without using a single synchronize/lock pattern. Moreover, the code doesn't need one to go into the low-level semantics of the JVM threading mechanism or use the complex ‘java.util.concurrent' package. This mechanism of concurrent processing using the Actor Model is truly more robust as multiple concurrent processes can communicate with each other without needing to use shared state variables.

More Stories By Sanat Vij

Sanat Vij is a professional software engineer currently working at CenturyLink. He has vast experience in developing high availability applications, configuring application servers, JVM profiling and memory management. He specializes in performance tuning of applications, reducing response times, and increasing stability.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
SYS-CON Events announced today that On the Avenue Marketing Group, a sales and marketing firm that utilizes events to market and sell products to consumers, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. On the Avenue Marketing Group (OTA) is a sales and marketing firm that utilizes events to market and sell products to consumers. On behalf of our clients, we attend thousands of fairs, festivals, expos, concerts, conferences, and sporting events annually, helping them reach millions of individuals ...
Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 16th Cloud Expo at the Javits Center in New York June 9-11 will find fresh new content in a new track called PaaS | Containers & Microservices Containers are not being considered for the first time by the cloud community, but a current era of re-consideration has pushed them to the top of the cloud agenda. With the launch of Docker's initial release in March of 2013, interest was revved up several notches. Then late last...
“In the past year we've seen a lot of stabilization of WebRTC. You can now use it in production with a far greater degree of certainty. A lot of the real developments in the past year have been in things like the data channel, which will enable a whole new type of application," explained Peter Dunkley, Technical Director at Acision, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Health care systems across the globe are under enormous strain, as facilities reach capacity and costs continue to rise. M2M and the Internet of Things have the potential to transform the industry through connected health solutions that can make care more efficient while reducing costs. In fact, Vodafone's annual M2M Barometer Report forecasts M2M applications rising to 57 percent in health care and life sciences by 2016. Lively is one of Vodafone's health care partners, whose solutions enable older adults to live independent lives while staying connected to loved ones. M2M will continue to gr...
SYS-CON Media announced today that @WebRTCSummit Blog, the largest WebRTC resource in the world, has been launched. @WebRTCSummit Blog offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. @WebRTCSummit Blog can be bookmarked ▸ Here @WebRTCSummit conference site can be bookmarked ▸ Here
SYS-CON Events announced today that Ciqada will exhibit at SYS-CON's @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Ciqada™ makes it easy to connect your products to the Internet. By integrating key components - hardware, servers, dashboards, and mobile apps - into an easy-to-use, configurable system, your products can quickly and securely join the internet of things. With remote monitoring, control, and alert messaging capability, you will meet your customers' needs of tomorrow - today! Ciqada. Let your products take flight. For more inform...
SYS-CON Events announced today that GENBAND, a leading developer of real time communications software solutions, has been named “Silver Sponsor” of SYS-CON's WebRTC Summit, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. The GENBAND team will be on hand to demonstrate their newest product, Kandy. Kandy is a communications Platform-as-a-Service (PaaS) that enables companies to seamlessly integrate more human communications into their Web and mobile applications - creating more engaging experiences for their customers and boosting collaboration and productiv...
Dave will share his insights on how Internet of Things for Enterprises are transforming and making more productive and efficient operations and maintenance (O&M) procedures in the cleantech industry and beyond. Speaker Bio: Dave Landa is chief operating officer of Cybozu Corp (kintone US). Based in the San Francisco Bay Area, Dave has been on the forefront of the Cloud revolution driving strategic business development on the executive teams of multiple leading Software as a Services (SaaS) application providers dating back to 2004. Cybozu's kintone.com is a leading global BYOA (Build Your O...
The best mobile applications are augmented by dedicated servers, the Internet and Cloud services. Mobile developers should focus on one thing: writing the next socially disruptive viral app. Thanks to the cloud, they can focus on the overall solution, not the underlying plumbing. From iOS to Android and Windows, developers can leverage cloud services to create a common cross-platform backend to persist user settings, app data, broadcast notifications, run jobs, etc. This session provides a high level technical overview of many cloud services available to mobile app developers, includi...
SYS-CON Events announced today that BroadSoft, the leading global provider of Unified Communications and Collaboration (UCC) services to operators worldwide, has been named “Gold Sponsor” of SYS-CON's WebRTC Summit, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. BroadSoft is the leading provider of software and services that enable mobile, fixed-line and cable service providers to offer Unified Communications over their Internet Protocol networks. The Company’s core communications platform enables the delivery of a range of enterprise and consumer calling...
While not quite mainstream yet, WebRTC is starting to gain ground with Carriers, Enterprises and Independent Software Vendors (ISV’s) alike. WebRTC makes it easy for developers to add audio and video communications into their applications by using Web browsers as their platform. But like any market, every customer engagement has unique requirements, as well as constraints. And of course, one size does not fit all. In her session at WebRTC Summit, Dr. Natasha Tamaskar, Vice President, Head of Cloud and Mobile Strategy at GENBAND, will explore what is needed to take a real time communications ...
The 17th International Cloud Expo has announced that its Call for Papers is open. 17th International Cloud Expo, to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, APM, APIs, Microservices, Security, Big Data, Internet of Things, DevOps and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal today!
WebRTC is an up-and-coming standard that enables real-time voice and video to be directly embedded into browsers making the browser a primary user interface for communications and collaboration. WebRTC runs in a number of browsers today and is currently supported in over a billion installed browsers globally, across a range of platform OS and devices. Today, organizations that choose to deploy WebRTC applications and use a host machine that supports audio through USB or Bluetooth can use Plantronics products to connect and transit or receive the audio associated with the WebRTC session.
What exactly is a cognitive application? In her session at 16th Cloud Expo, Ashley Hathaway, Product Manager at IBM Watson, will look at the services being offered by the IBM Watson Developer Cloud and what that means for developers and Big Data. She'll explore how IBM Watson and its partnerships will continue to grow and help define what it means to be a cognitive service, as well as take a look at the offerings on Bluemix. She will also check out how Watson and the Alchemy API team up to offer disruptive APIs to developers.
The IoT Bootcamp is coming to Cloud Expo | @ThingsExpo on June 9-10 at the Javits Center in New York. Instructor. Registration is now available at http://iotbootcamp.sys-con.com/ Instructor Janakiram MSV previously taught the famously successful Multi-Cloud Bootcamp at Cloud Expo | @ThingsExpo in November in Santa Clara. Now he is expanding the focus to Janakiram is the founder and CTO of Get Cloud Ready Consulting, a niche Cloud Migration and Cloud Operations firm that recently got acquired by Aditi Technologies. He is a Microsoft Regional Director for Hyderabad, India, and one of the f...
As enterprises move to all-IP networks and cloud-based applications, communications service providers (CSPs) – facing increased competition from over-the-top providers delivering content via the Internet and independently of CSPs – must be able to offer seamless cloud-based communication and collaboration solutions that can scale for small, midsize, and large enterprises, as well as public sector organizations, in order to keep and grow market share. The latest version of Oracle Communications Unified Communications Suite gives CSPs the capability to do just that. In addition, its integration ...
SYS-CON Events announced today that Litmus Automation will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Litmus Automation’s vision is to provide a solution for companies that are in a rush to embrace the disruptive Internet of Things technology and leverage it for real business challenges. Litmus Automation simplifies the complexity of connected devices applications with Loop, a secure and scalable cloud platform.
In 2015, 4.9 billion connected "things" will be in use. By 2020, Gartner forecasts this amount to be 25 billion, a 410 percent increase in just five years. How will businesses handle this rapid growth of data? Hadoop will continue to improve its technology to meet business demands, by enabling businesses to access/analyze data in real time, when and where they need it. Cloudera's Chief Technologist, Eli Collins, will discuss how Big Data is keeping up with today's data demands and how in the future, data and analytics will be pervasive, embedded into every workflow, application and infra...
As Marc Andreessen says software is eating the world. Everything is rapidly moving toward being software-defined – from our phones and cars through our washing machines to the datacenter. However, there are larger challenges when implementing software defined on a larger scale - when building software defined infrastructure. In his session at 16th Cloud Expo, Boyan Ivanov, CEO of StorPool, will provide some practical insights on what, how and why when implementing "software-defined" in the datacenter.
SYS-CON Media announced today that @ThingsExpo Blog launched with 7,788 original stories. @ThingsExpo Blog offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. @ThingsExpo Blog can be bookmarked. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago.